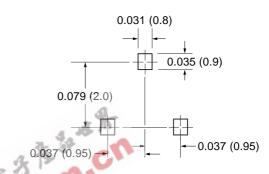

New Product

Vishay Semiconductors formerly General Semiconductor

Small Signal Transistors (PNP)

TO-236AB (SOT-23)



Dimensions in inches and (millimeters)

Features

- PNP Silicon Epitaxial Planar Transistors
- Suited for low level, low noise, low frequency applications in hybrid cicuits.
- Low Current, Low Voltage.
- As complementary types, BCW60 Series NPN transistors are recommended.

Mounting Pad Layout

Mechanical Data

Case: SOT-23 Plastic Package

Weight: approx. 0.008g

Marking BCW61A = BA

Code: BCW61B = BB

BCW61C = BC

BCW61D = BD

Packaging Codes/Options:

E8/10K per 13" reel (8mm tape), 30K/box E9/3K per 7" reel (8mm tape), 30K/box

Maximum Ratings & Thermal Characteristics Ratings at 25°C ambient temperature unless otherwise specified.

Parameter	Symbol	Value	Unit
Collector-Emitter Voltage (V _{BE} = 0)	-Vces	32	V
Collector-Emitter Voltage	-VCEO	32	V
Emitter-Base Voltage	-VEBO	5.0	V
Collector Current (DC)	-Ic	100	mA
Peak Collector Current	-ICM	200	mA
Base Current (DC)	-IB	50	mA
Power Dissipation	Ptot	250	mW
Maximum Junction Temperature	Tj	150	°C
Storage Temperature Range	Tstg	-65 to +150	°C
Thermal Resistance, Junction to Ambient Air	RθJA	500 ⁽¹⁾	°C/W

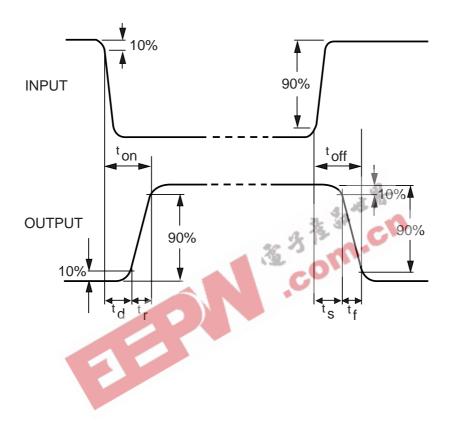
Note

(1) Mounted on FR-4 printed-ciruit board.

BCW61 Series

Vishay Semiconductors formerly General Semiconductor

Electrical Characteristics Ratings at 25°C ambient temperature unless otherwise specified.


	ratings at 20 0 am	Symbol	Min.	TYP.	Max.	Unit
DC Current Gain		, , , ,				
at $-VCE = 5 \text{ V}$, $-IC = 10 \mu\text{A}$	BCW61A	hFE	_	_	_	_
at $-VCE = 5 \text{ V}$, $-IC = 10 \mu\text{A}$	BCW61B	hFE	30	_	_	_
at $-VCE = 5 \text{ V}$, $-IC = 10 \mu\text{A}$	BCW61C	hFE	40	_	_	_
at $-VCE = 5 \text{ V}$, $-IC = 10 \mu\text{A}$	BCW61D	hFE	100	_	_	_
at 102 01, 10 10 part	20					
at $-VCE = 5 V$, $-IC = 2 mA$	BCW61A	hFE	120	_	220	_
at $-VCE = 5 \text{ V}$, $-IC = 2 \text{ mA}$	BCW61B	hFE	180	_	310	_
at $-VCE = 5 \text{ V}$, $-IC = 2 \text{ mA}$	BCW61C	hFE	250	_	460	_
at $-VCE = 5 \text{ V}$, $-IC = 2 \text{ mA}$	BCW61D	hFE	380	_	630	_
at $-VCE = 1 V$, $-IC = 50 mA$	BCW61A	hFE	60	_	_	_
at $-VCE = 1 V$, $-IC = 50 mA$	BCW61B	hFE	80	-0 =	_	_
at $-VCE = 1 V$, $-IC = 50 \text{ mA}$	BCW61C	hFE	100	2 95-	_	_
at $-VCE = 1 \text{ V}$, $-IC = 50 \text{ mA}$	BCW61D	hFE	110 🗸 🦠	16- /···	-	_
Collector-Emitter Saturation Voltage			75 3°	-17		
•		-VcEsat	60	C.	250	mV
at -lc = 10 mA, -lB = 0.25 mA				_	1	
at -lc = 50 mA, -l _B = 1.25 mA		-VCEsat	120	_	550	mV
Base-Emitter Saturation Voltage						
at $-I_C = 10 \text{ mA}$, $-I_B = 0.25 \text{ mA}$		-V _{BEsat}	600	_	850	mV
at $-I_C = 50 \text{ mA}$, $-I_B = 1.25 \text{ mA}$		-V _{BEsat}	680	_	1050	mV
Base-Emitter Voltage						
at $-VCE = 5 \text{ V}$, $-IC = 2 \text{ mA}$		–VBE	600	650	750	mV
at $-VCE = 5 \text{ V}$, $-IC = 10 \mu\text{A}$		–VBE	_	550	'00	mV
at $-VCE = 1 \text{ V}$, $-IC = 50 \text{ mA}$		–VBE	_	720	_	mV
		VBL		720		111.4
Collector-Emiter Cut-off Current						
at -V _{CE} = 32 V, V _{EB} =0		-ICES	_	_	20	nA
at -V _{CE} = 32 V, V _{EB} =0, T _A = 150°C			_	_	20	μΑ
Emitter-Base Cut-off Current						
at $-V_{EB} = 4 \text{ V}, I_{C}=0$		-I _{EBO}	_	_	20	nA
Gain-Bandwidth Product						
at $-VCE = 5 \text{ V}$, $-IC = 10 \text{ mA}$, $f = 100 \text{ MHz}$		f⊤	100	_	_	MHz
Collector-Base Capacitance		Ссво	_	4.5	_	pF
at $-V_{CB} = 10 \text{ V}, f = 1 \text{ MHz}, I_{E}=0$		ОСВО		4.5		ρι
Emitter-Base Capacitance						_
at –VEB = 0.5 V, f = 1 MHz, IC=0		Сево	_	11	-	pF
Noise Figure	0.111 D 00011	F	_	2	6	dB
at –VCE = 5 V, –IC = 200 μA, Rs = 2 kΩ, f = 10	BU KHZ, B = 200HZ	·				
Small Signal Current Gain	BCW60A		_	200		
at $-V_{CE} = 5V$, $-I_{C} = 2$ mA, $f = 1.0$ kHz	BCW60B	hfe	_	260		
, , , , , , ,	BCW60C	rite	_	330		
	BCW60D		_	520		
Turn on Time of Dr. 2000 (fi 1)						
Turn-on Time at $R_L = 990\Omega$ (see fig. 1)	4 A	ton	_	85	150	ns
-Vcc = 10V, -Ic = 10mA, -IB(on) = IB(off)	= 1MA					
Turn-off Time at $R_L = 990\Omega$ (see fig. 1)		.		400	000	
-VCC = 10V, $-Ic = 10mA$, $-IB(on) = IB(off)$	= 1mA	toff	_	480	800	ns

www.vishay.com Document Number 88171 09-May-02

Vishay Semiconductors formerly General Semiconductor

Fig. 1 - Switching Waveforms

