BOURNS®

- Designed for Complementary Use with BDX34, BDX34A, BDX34B, BDX34C and BDX34D
- 70 W at 25°C Case Temperature
- 10 A Continuous Collector Current
- Minimum h_{FE} of 750 at 3V, 3 A

Pin 2 is in electrical contact with the mounting base.

MDTRACA

absolute maximum ratings at 25°C case temperature (unless otherwise noted)

RATING	SYMBOL	VALUE	UNIT	
	BDX33		45	
Collector-base voltage (I _E = 0)	BDX33A		60	
	BDX33B	V _{CBO}	80	V
	BDX33C	50	100	
	BDX33D	-10	120	
40 9	BDX33	9	45	
Collector-emitter voltage (I _B = 0)	BDX33A		60	
	BDX33B	V_{CEO}	80	V
	BDX33C		100	
	BDX33D		120	
Emitter-base voltage		V _{EBO}	5	V
Continuous collector current		I _C	10	Α
Continuous base current		Ι _Β	0.3	Α
Continuous device dissipation at (or below) 25°C case temperature (see Note 1)	P _{tot}	70	W	
Continuous device dissipation at (or below) 25°C free air temperature (see Note 2	P _{tot}	2	W	
Operating free air temperature range	T _J	-65 to +150	°C	
Storage temperature range	T _{stg}	-65 to +150	°C	
Operating free-air temperature range	T _A	-65 to +150	°C	

NOTES: 1. Derate linearly to 150°C case temperature at the rate of $0.56~\text{W}/^{\circ}\text{C}$.

^{2.} Derate linearly to 150°C free air temperature at the rate of 16 mW/°C.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER		TEST	CONDITIONS		MIN	TYP	MAX	UNIT
					BDX33	45			
	Collector-emitter	I _C = 100 mA	I _B = 0	(see Note 3)	BDX33A	60			
$V_{(BR)CEO}$					BDX33B	80			V
()	breakdown voltage				BDX33C	100			
					BDX33D	120			
		V _{CE} = 30 V	$I_B = 0$		BDX33			0.5	
		$V_{CE} = 30 \text{ V}$	$I_B = 0$		BDX33A			0.5	
		$V_{CE} = 40 \text{ V}$	$I_B = 0$		BDX33B			0.5	
		$V_{CE} = 50 V$	$I_B = 0$		BDX33C			0.5	
1	Collector-emitter	$V_{CE} = 60 \text{ V}$	$I_B = 0$		BDX33D			0.5	mA
ICEO	cut-off current	$V_{CE} = 30 V$	$I_B = 0$	$T_C = 100$ °C	BDX33			10	IIIA
		$V_{CE} = 30 \text{ V}$	$I_B = 0$	$T_C = 100$ °C	BDX33A			10	
		$V_{CE} = 40 \text{ V}$	$I_B = 0$	$T_C = 100$ °C	BDX33B			10	
		$V_{CE} = 50 V$	$I_B = 0$	$T_C = 100^{\circ}C$	BDX33C			10	
		$V_{CE} = 60 \text{ V}$	$I_B = 0$	$T_C = 100^{\circ}C$	BDX33D			10	
		V _{CB} = 45 V	I _E = 0		BDX33			1	
		$V_{CB} = 60 \text{ V}$	$I_E = 0$		BDX33A			1	
	Collector cut-off current	$V_{CB} = 80 \text{ V}$	$I_E = 0$		BDX33B			1	
		V _{CB} = 100 V	$I_E = 0$		BDX33C			1	
1		V _{CB} = 120 V	$I_E = 0$	- 3bc	BDX33D			1	mA
I _{CBO}		$V_{CB} = 45 V$	$I_E = 0$	T _C = 100°C	BDX33			5	ША
		$V_{CB} = 60 \text{ V}$	$I_E = 0$	$T_C = 100$ °C	BDX33A			5	
		$V_{CB} = 80 \text{ V}$	$I_E = 0$	$T_{\rm C} = 100^{\circ}{\rm C}$	BDX33B			5	
		V _{CB} = 100 V	I _E = 0	$T_{\rm C} = 100^{\circ}{\rm C}$	BDX33C			5	
		V _{CB} = 120 V	$I_E = 0$	$T_{\rm C} = 100^{\circ}{\rm C}$	BDX33D			5	
I _{EBO}	Emitter cut-off current	V _{EB} = 5 V	I _C = 0					10	mA
	Forward current transfer ratio	$V_{CE} = 3 V$	I _C = 4 A		BDX33	750			
		$V_{CE} = 3 V$	$I_C = 4 A$		BDX33A	750			
h_{FE}		$V_{CE} = 3 V$	$I_{\rm C} = 3 {\rm A}$	(see Notes 3 and 4)	BDX33B	750			
		$V_{CE} = 3 V$	$I_{C} = 3 A$		BDX33C	750			
		$V_{CE} = 3 V$	$I_C = 3 A$		BDX33D	750			
	Base-emitter voltage	V _{CE} = 3 V	I _C = 4 A		BDX33			2.5	
		V _{CE} = 3 V	$I_C = 4 A$		BDX33A			2.5	
$V_{BE(on)}$		V _{CE} = 3 V	$I_C = 3 A$	(see Notes 3 and 4)	BDX33B			2.5	V
		$V_{CE} = 3 V$	$I_C = 3 A$		BDX33C			2.5	
		$V_{CE} = 3 V$	$I_C = 3 A$		BDX33D			2.5	
	Collector-emitter saturation voltage	I _B = 8 mA	I _C = 4 A		BDX33			2.5	
		$I_B = 8 \text{ mA}$	$I_C = 4 A$		BDX33A			2.5	
V _{CE(sat)}		$I_B = 6 \text{ mA}$	$I_C = 3 A$	(see Notes 3 and 4)	BDX33B			2.5	V
		$I_B = 6 \text{ mA}$	$I_C = 3 A$		BDX33C			2.5	
		$I_B = 6 \text{ mA}$	$I_C = 3 A$		BDX33D			2.5	
V _{EC}	Parallel diode forward voltage	I _E = 8 A	I _B = 0					4	V

NOTES: 3. These parameters must be measured using pulse techniques, t_p = 300 μ s, duty cycle \leq 2%.

^{4.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts.

thermal characteristics

PARAMETER				MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.78	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W

resistive-load-switching characteristics at 25°C case temperature

	PARAMETER	TEST CONDITIONS †			MIN	TYP	MAX	UNIT
t _{on}	Turn-on time	I _C = 3 A	$I_{B(on)} = 12 \text{ mA}$	$I_{B(off)} = -12 \text{ mA}$		1		μs
t _{off}	Turn-off time	$V_{BE(off)} = -3.5 \text{ V}$	$R_L = 10 \Omega$	t_p = 20 μ s, dc \leq 2%		5		μs

[†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters.

TYPICAL CHARACTERISTICS

TYPICAL DC CURRENT GAIN COLLECTOR CURRENT TCS130AF 50000 -40°C = 25°C = 100°C h_{FE} - Typical DC Current Gain 10000 1000 3 V = 300 μs, duty cycle < 2% 100 0.5 10 I_c - Collector Current - A

Figure 1.

COLLECTOR-EMITTER SATURATION VOLTAGE

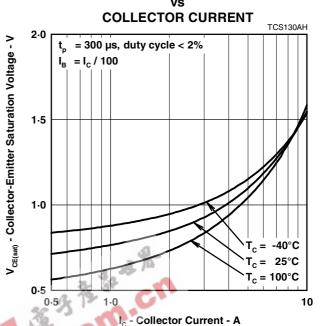
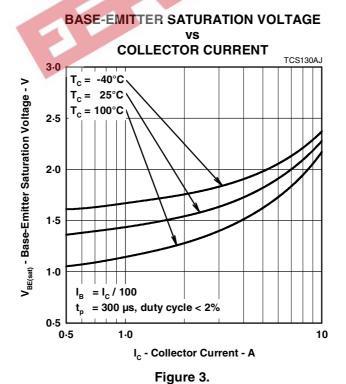



Figure 2.

PRODUCT INFORMATION

THERMAL INFORMATION

MAXIMUM POWER DISSIPATION

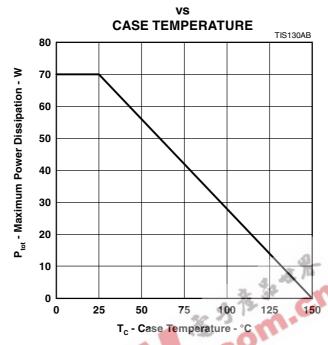
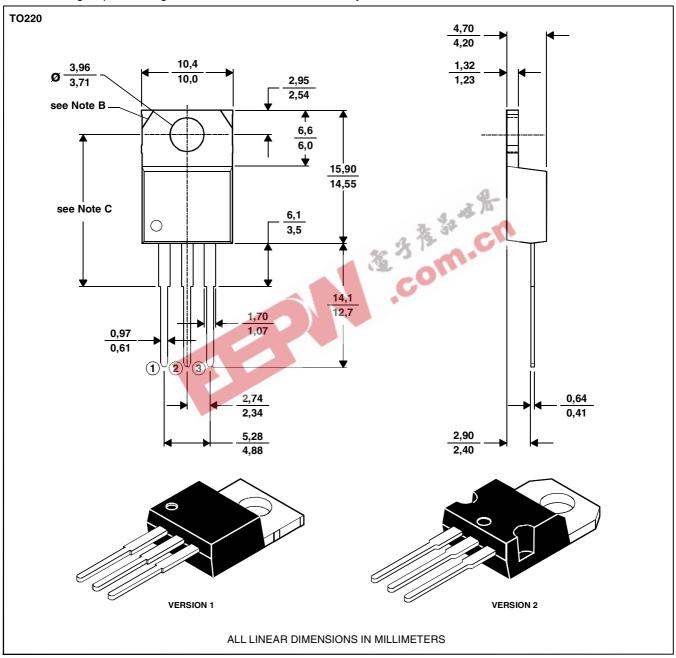


Figure 4



MECHANICAL DATA

TO-220

3-pin plastic flange-mount package

This single-in-line package consists of a circuit mounted on a lead frame and encapsulated within a plastic compound. The compound will withstand soldering temperature with no deformation, and circuit performance characteristics will remain stable when operated in high humidity conditions. Leads require no additional cleaning or processing when used in soldered assembly.

NOTES: A. The centre pin is in electrical contact with the mounting tab.

B. Mounting tab corner profile according to package version.

C. Typical fixing hole centre stand off height according to package version.

Version 1, 18.0 mm. Version 2, 17.6 mm.

MDXXBE