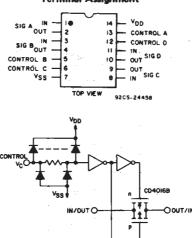
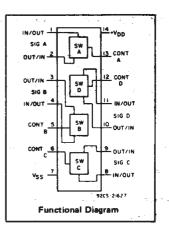


# CMOS Quad Bilateral Switch

For Transmission or Multiplexing of Analog or Digital Signals

High-Voltage Types (20-Volt Rating)


■ CD4016B Series types are quad bilateral switches intended for the transmission or multiplexing of analog or digital signals. Each of the four independent bilateral switches has a single control signal input which simultaneously biases both the p and n device in a given switch on or off.


The CD4016 "B" Series types are supplied in 14-lead hermetic dual-in-line ceramic packages (D and F suffixes), 14-lead dual-in-line plastic packages (E suffix), and in chip form (H suffix).

#### Features:

- 20-V digital or ± 10-V peak-to-peak switching
- **280-** $\Omega$  typical on-state resistance for 15-V operation **Switch on-state resistance matched to within 10**  $\Omega$
- typ. over 15-V signal-input range High on/off output-voltage ratio:
- 65 dB typ. @  $f_{is}$  = 10 kHz, R<sub>L</sub> = 10 k $\Omega$ = High degree of linearity: <0.5% distortion
- typ. @ f<sub>is</sub> = 1 kHz, V<sub>is</sub> = 5 V<sub>p-p</sub>, V<sub>DD</sub>−V<sub>SS</sub> ≥ 10 V, R<sub>L</sub> = 10 kΩ
- Extremely low off-state switch leakage resulting in very low offset current and high effective off-state resistance: 100 pA typ. @ VDD--VSS=18 V, TA=25°C
- Extremely high control input impedance (control circuit isolated from signal circuit: 10<sup>12</sup> Ω typ.
- Low crosstalk between switches:
   -50 dB typ. @ f<sub>is</sub> = 0.9 MHz, R<sub>L</sub> = 1 kΩ
- Matched control-input to signal-output capacitance: Reduces output signal transients
- Frequency response, switch on = 40 MHz (typ.)
- 100% tested for quiescent current at 20 V
- Maximum control input current of 1 µA at 18 V over full package temperature range; 100 nA at 18 V at 25°C
- **5-V, 10-V, and 15-V parametric ratings** *Applications:*
- Analog signal switching/multiplexing
   Signal gating
   Modulator
   Squelch control
   Demodulator
   Chopper
   Commutating switch
   Digital signal switching/multiplexing
- CMOS logic implementation
- Analog-to-digital & digital-toanalog conversion
- Digital control of frequency, impedance, phase, and analog-signal gain

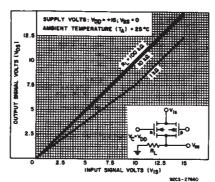
**Terminal Assignment** 

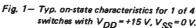




Schematic diagram - 1 of 4 identical sections.

#### **RECOMMENDED OPERATING CONDITIONS**


For maximum reliability, nominal operating conditions should be selected so that operation is always within the following range:


| ] | CHARACTERISTIC                                                                |      |      | UNITS  |
|---|-------------------------------------------------------------------------------|------|------|--------|
|   | of AllAot Enights                                                             | Min. | Max. | 01113  |
|   | Supply Voltage Range (For T <sub>A</sub> = Full Package<br>Temperature Range) | 3    | 18   | •<br>• |

#### MAXIMUM RATINGS, Absolute-Maximum Values:

| DC SUPPLY-VOLTAGE RANGE, (VDD)                                                |                                       |
|-------------------------------------------------------------------------------|---------------------------------------|
| Voltages referenced to V <sub>SS</sub> Terminal)                              | -0.5V to +20V                         |
| INPUT VOLTAGE RANGE, ALL INPUTS0.5V                                           | to V <sub>DD</sub> +0.5V              |
| DC INPUT CURRENT, ANY ONE INPUT                                               |                                       |
| POWER DISSIPATION PER PACKAGE (PD):                                           |                                       |
| For T <sub>A</sub> = -55 <sup>o</sup> C to +100 <sup>o</sup> C                | 500mW                                 |
| For T <sub>A</sub> = +100°C to +125°C Derate Linearity at 12mW/               | <sup>O</sup> C to 200mW               |
| DEVICE DISSIPATION PER OUTPUT TRANSISTOR                                      |                                       |
| FOR T <sub>A</sub> = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)       | 100mW                                 |
| OPERATING-TEMPERATURE RANGE (TA)                                              | <sup>D</sup> C to +125 <sup>O</sup> C |
| STORAGE TEMPERATURE RANGE (Tstg)650                                           | <sup>o</sup> C to +150 <sup>o</sup> C |
| LEAD TEMPERATURE (DURING SOLDERING):                                          |                                       |
| At distance $1/16 \pm 1/20$ in the /1 50 $\pm$ 0.70 mm) from case for 100 meV | 100500                                |







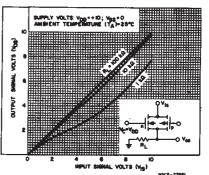



Fig. 2– Typ. on-state characteristics for 1 of 4 switches with  $V_{DD}$  = +10 V,  $V_{SS}$  = 0 V.

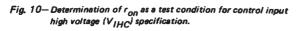
# CD4016B Types

|                                                                            | ARACTERIS                                                                                                                                                                                                                                                                                              | TICS                                  |                        |                        |                  |      |                     |             |                      |                    |                       | ſ  |                             | SUPPLY VOLTS: V00*+5; V55*0<br>AMMENT TEMPERATURE (%) = 25*C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|------------------------|------------------|------|---------------------|-------------|----------------------|--------------------|-----------------------|----|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHARACTERISTIC                                                             | TE                                                                                                                                                                                                                                                                                                     | ST CONDITI                            | ONS                    |                        |                  |      |                     |             | CATED<br>3 (°C)      |                    | U<br>N<br>I<br>T<br>S |    | UTPUT SIGNAL VOLTS (VOS)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                            |                                                                                                                                                                                                                                                                                                        |                                       | V <sub>IN</sub><br>(V) | V <sub>DD</sub><br>(V) | -55              | -40  | +85                 | +125        | +:<br>Typ.           | 25<br>Max.         |                       |    | а<br>                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Quiescent Device<br>Current, I <sub>DD</sub>                               |                                                                                                                                                                                                                                                                                                        | -                                     | 0,5<br>0,10<br>0,15    | 5<br>10<br>15          | 0.25<br>0.5<br>1 | 0.5  | 7.5<br>15<br>30     | 15          | 0.01<br>0.01<br>0.01 | 0.25<br>0.5<br>1   | μА                    | /  | °<br>≓ig.                   | $\frac{2}{3} \frac{3}{4} \frac{5}{5}$ INFUT SIGNAL VOLTS (V <sub>18</sub> )<br>VECS-27662<br>3-Typ. on-state characteristics for 1 of 4<br>switches with $V_{DD} = +5V$ , $V_{SS} = 0V$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Signal Inputs (V <sub>is</sub>                                             | ) and Output                                                                                                                                                                                                                                                                                           | (V <sub>os</sub> )                    | 0,20                   | 20                     | 5                | 5    | 150                 | 150         | 0.02                 | 5                  | <u> </u>              |    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| On-State<br>Resistance, r <sub>on</sub>                                    | V <sub>C</sub> = V <sub>DD</sub><br>R <sub>L</sub> = 10kΩ                                                                                                                                                                                                                                              |                                       | V <sub>SS</sub>        | 10                     | 600<br>1870      |      | 840<br>2 <b>380</b> |             |                      | 660                |                       |    | 18 108                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Max.                                                                       | to<br>VDD-VSS                                                                                                                                                                                                                                                                                          |                                       | V <sub>SS</sub>        | 15                     | 360<br>775       | 370  | 520<br>1080         | 600<br>1230 | 3                    | 2000<br>400<br>850 | Ω                     | C  | -20                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ∆On-State<br>Resistance<br>Between Any<br>2 Switches, ∆r <sub>on</sub>     | R <sub>L</sub> =10kΩ,                                                                                                                                                                                                                                                                                  |                                       |                        | 5<br>10<br>15          | -                |      | -                   |             | 15<br>10<br>5        | -                  | Ω                     |    | -                           | 76 -5 -2.5 0 2.5 5 7.5<br>WHUT SIMMAL VOLTS (Y15)<br>92C5-27663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total Harmonic<br>Distortion,<br>THD                                       | V <sub>C</sub> =V <sub>DD</sub> = 5<br>= 5V (Sine wa<br>RL=10 kΩ, f <sub>i</sub>                                                                                                                                                                                                                       | ave centered                          | d on O                 | s(p-p)<br>V)           |                  |      | _                   | -           | 0.4                  | -                  | %                     |    | <b>,</b> 4                  | - Typ. on-state characteristics for 1 of 4<br>switches with V <sub>DD</sub> = +7.5 V, V <sub>SS</sub> <sup>=</sup> -7.5 V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -3dB Cutoff<br>Frequency<br>(Switch on)                                    | VC=VDD=5<br>Vis(p-p) =5 V<br>centered on                                                                                                                                                                                                                                                               | V, V <sub>SS</sub> =-E<br>/ (Sine wav | 5V,<br>e               |                        | . —              | -    | -                   | -           | 40                   | _                  | MHz                   |    | NL VOLTS (V <sub>OS</sub> ) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -50dB Feed-<br>through<br>Frequency<br>(Switch off)                        | VC <sup>=V</sup> SS <sup>=</sup> -<br>(Sine wave co<br>R <sub>L</sub> = 1 lkΩ                                                                                                                                                                                                                          | 5V, V <sub>is(p-p</sub><br>entered on | ,)=5∨<br>0∨)           |                        | . –              | -    | -                   | _           | 1.25                 | -                  | MHz                   |    | NIPIS TURTINO               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Input/Output<br>Leakage Current<br>(Switch off)<br>I <sub>is</sub> Max.    | $V_{C} = 0 V$<br>$V_{is} = 18 V, V$<br>$V_{is} = 0 V,$<br>$V_{os} = 18 V$                                                                                                                                                                                                                              | V <sub>os</sub> = 0 V;                | :                      | 18                     | ±0.1             | ±0.1 | ±1                  | ±1          | 104                  | ±0.1               | μA                    | 6  | ig. 1                       | $\frac{1}{2} \frac{1}{1} \frac{1}$ |
| –50 dB<br>Crosstalk<br>Frequency                                           | $V_{C}(A) = V_{DC}$ $V_{C}(B) = V_{SS}$ $V_{is}(A) = 5 V$ $SO \Omega \text{ source}$ $R_{L} = 1  k\Omega$                                                                                                                                                                                              | = -5 V,                               |                        | 3                      |                  | -    |                     | _           | 0.9                  |                    | MHz                   |    | 3                           | SUPPLY VOLTS: VDD = + 2.5V, VSS = -2.5V<br>AMMENT TEMPERATURE (TA) = 25°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Propagation<br>Delay (Signal<br>Input to Signal<br>Output) t <sub>pd</sub> | $\begin{array}{l} \textbf{R}_{L} = 200 \ \textbf{k} \Omega \\ \textbf{V}_{C} = \textbf{V}_{DD}, \textbf{V} \\ \textbf{C}_{L} = 50 \ \textbf{pF} \\ \textbf{V}_{is} = \textbf{Square} \\ \textbf{0} \ \textbf{to} \ \textbf{V}_{DD} \\ \textbf{t}_{r}, \ \textbf{t}_{f} = 20 \ \textbf{ns} \end{array}$ | SS = GND,                             |                        | 5<br>10<br>15          | -                | -    | _<br>_<br>_         | -           | 40<br>20<br>15       | 100<br>40<br>30    | ns                    |    |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Capacitance:<br>Input, C <sub>is</sub><br>Output, C <sub>os</sub>          | V <sub>DD</sub> = +5 V<br>V <sub>C</sub> = V <sub>SS</sub> = -                                                                                                                                                                                                                                         | -5 V                                  |                        |                        | -                | -    | -                   |             | 4                    | _                  | ρF                    |    | -2                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Feedthrough,<br>Cios                                                       |                                                                                                                                                                                                                                                                                                        |                                       |                        |                        | -                | -    |                     |             | 0.2                  |                    |                       | Fi | g. 6                        | - Typ. on-state characteristics for 1 of 4<br>switches with $V_{DD}$ = +2.5 V, $V_{SS}$ = -2.5 V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

 $t_{i}^{t}$ 

P.

ELECTRICAL CHARACTERISTICS (cont'd)


| CHARACTERISTIC                                     | TEST CONDITIONS                                                                                                                                            |                 | LIMITS AT INDICATED<br>TEMPERATURES (°C) |          |       |       |          |      | U<br>N<br>I<br>T |   |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------|----------|-------|-------|----------|------|------------------|---|
|                                                    |                                                                                                                                                            | V <sub>DD</sub> |                                          | +25      |       |       |          |      |                  |   |
|                                                    |                                                                                                                                                            | (V)             | 55                                       | 40       | +85   | +125  | Тур.     | Max. |                  |   |
| Control (V <sub>C</sub> )                          |                                                                                                                                                            |                 |                                          |          |       |       |          |      |                  |   |
| Control Input<br>Low Voltage,<br>VILC (Max.)       | $ I_{is}  < 10 \mu A$<br>$V_{is} = V_{SS}, V_{OS} = V_{DD}$<br>and<br>$V_{is} = V_{DD}, V_{OS} = V_{SS}$                                                   | 5,10,<br>15     | 0.9                                      | 0.9      | 0.4   | 0.4   | <u>.</u> | 0.7  | v                | , |
| Control Input                                      | · · · · ·                                                                                                                                                  | 5               |                                          | <b>!</b> | 3.5 ( | Min.) | L        | L    |                  |   |
| High Voltage,                                      | See Fig. 10                                                                                                                                                | 10              |                                          | ~        | 7 (   | Min.) |          |      | V                |   |
| VIHC                                               | · · · · · · · · · · · · · · · · · · ·                                                                                                                      | 15              |                                          |          | 11 (  | Min.) |          |      |                  |   |
| Input Current,<br>IN (Max.)                        | V <sub>is</sub> ≤ V <sub>DD</sub><br>V <sub>DD</sub> - VSS = 18 ∨<br>V <sub>CC</sub> ≤ V <sub>DD</sub> - V <sub>SS</sub>                                   | 18              | ±0.1                                     | ±0.1     | ±1    | ±1 .  | ±10-5    | ±0.1 | μΑ               | 1 |
| Crosstalk (Con-<br>trol Input to<br>Signal Output) | $V_{C} = 10 V (Sq. Wave)$<br>$t_{r}, t_{f} = 20 ns$<br>$R_{L} = 10 k\Omega$                                                                                | 10              | -                                        | _        | _     | -     | 50       | 莽    | mV               |   |
| Turn-On                                            | t <sub>r</sub> , t <del>r</del> = 20 ns                                                                                                                    | 5               | - '                                      |          | -     |       | 35       | 70   |                  |   |
| Propagation<br>Delay                               | CL = 50 pF<br>R <sub>L</sub> = 1 kΩ                                                                                                                        | 10              | —                                        | -        | -     | - \   | 20       | 40   | ns               |   |
| Delay                                              | -                                                                                                                                                          | 15              | -                                        | -        | 1-1   | -     | 15       | 30   |                  |   |
| Maximum<br>Control Input<br>Repetition Rate        | $V_{is} = V_{DD}, V_{SS} = GND, R_L = 1 k\Omega to gnd, C_L = 50 pF, V_C = 10 V(Square) wave centered on 5 V) t_r, t_f = 20 ns, V_{OS} = ½ V_{OS} @ 1 kHz$ | 10              | -                                        |          | -     | _     | 10       | -    | MHz              |   |
| Input<br>Capacitance,<br>CIN                       |                                                                                                                                                            |                 |                                          | _        | -     | -     | 5        | 7.5  | μF               |   |

|     |     |       |                      | Switch Ir | nput  |       |        | Switch | Output |  |
|-----|-----|-------|----------------------|-----------|-------|-------|--------|--------|--------|--|
| VDD | Vis |       | i <sub>is</sub> (mA) |           |       |       |        |        |        |  |
| (V) | (V) | –55°C | -40°C                | 25°C*     | 25°C▲ | +85°C | +125°C | Min.   | Max.   |  |
| 5   | 0   | 0.25  | 0.2                  | 0.2       | 0.16  | 0.12  | 0.14   | -      | 0.4    |  |
| 5   | 5   | 0.25  | 0.2                  | -0.2      | 0.16  | 0.12  | 0.14   | 4.6    |        |  |
| 10  | 0   | 0.62  | 0.5                  | 0.5       | 0.4   | 0.3   | 0.35   |        | 0.5    |  |
| 10  | 10  | -0.62 | 0.5                  | 0.5       | -0.4  | -0.3  | 0.35   | 9.5    |        |  |
| 15  | 0   | 1.8   | 1.4                  | 1.5       | 1.2   | 1     | 1.1    |        | 1.5    |  |
| 15  | 15  | -1.8  | -1.4                 | -1.5      | -1.2  | -1    | -1.1   | 13.5   | —      |  |

\* Plastic package

A Ceramic package





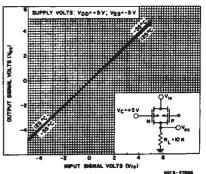



Fig. 7— Typ. on-state characteristics as a function of temp. for 1 of 4 switches with V<sub>DD</sub> = +5 V, V<sub>SS</sub> = -5 V.

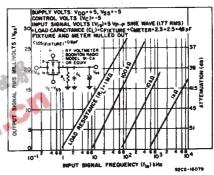



Fig. 8 – Typ. feedthru vs. frequency – switch off.

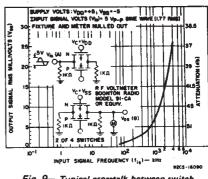



Fig. 9— Typical crosstalk between switch circuits in the same package.

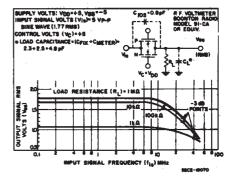



Fig. 11 - Typical frequency response - switch on.

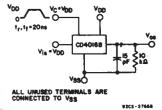
## TYPICAL ON-STATE RESISTANCE CHARACTERISTICS, TA = 25°C

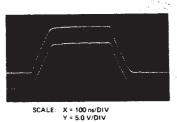
| CHARAC-<br>TERISTIC*   |                        | PLY                    |                |                            |              |               |                     |                        |   |
|------------------------|------------------------|------------------------|----------------|----------------------------|--------------|---------------|---------------------|------------------------|---|
|                        |                        |                        |                | R <sub>L</sub> = 1kΩ       |              | TIONS<br>10kΩ | R = 100ks           |                        |   |
|                        | V <sub>DD</sub><br>(V) | V <sub>SS</sub><br>(V) | VALŪE<br>(\$2) | · V <sub>is</sub><br>· (V) | VALUE<br>(Ω) | Via<br>(V)    | <b>VALUE</b><br>(Ω) | V <sub>is</sub><br>(V) |   |
|                        |                        | •                      | 200            | +15                        | 200          | +15           | 180                 | +15                    |   |
| ron                    | +15                    | 0                      | 200            | 0                          | 200          | 0             | 200                 | 0                      |   |
| ron (max.)             | +15                    | 0                      | 300            | +11                        | 300          | +9.3          | 320                 | +9.2                   |   |
| _                      |                        |                        | 290            | +10                        | 250          | +10           | 240                 | +10                    |   |
| ron                    | +10                    | 0                      | 290            | 0                          | 250          | 0             | 300                 | 0                      |   |
| r <sub>on</sub> (max.) | +10                    | 0                      | 500            | +7.4                       | 560          | +5.6          | 610                 | +5.5                   |   |
|                        | + 5                    | 0                      | 860            | + 5                        | 470          | + 5           | 450                 | + 5                    |   |
| ron 🗠                  |                        | 7 5                    | 0              | 600                        | 0            | - 580         | 0                   | 800                    | 0 |
| r <sub>on</sub> (max.) | + 5                    | 0                      | 1.7k           | +4.2                       | 7k           | +2.9          | 33k                 | +2.7                   |   |
|                        | .75                    | 7 5                    | 200            | +7.5                       | 200          | +7.5          | 180                 | +7.5                   |   |
| ron                    | +7.5                   | -7.5                   | 200            | ~7.5                       | 200          | 7.5           | 180                 | -7.5                   |   |
| r <sub>on</sub> (max.) | +7.5                   | -7.5                   | 290            | ±0.25                      | 280          | ±25           | 400                 | ±0.25                  |   |
| r                      | + 5                    | - 5                    | 260            | + 5                        | 250          | + 5           | 240                 | + 5                    |   |
| ron                    |                        | - 5                    | 310            | - 5                        | 250          | - 5           | - 240               | - 5                    |   |
| ron (max.)             | + 5                    | - 5                    | 600            | ±0.25                      | 580          | ±0.25         | 760                 | ±0.25                  |   |
|                        | +2.5                   | -2.5                   | 590            | +2.5                       | 450          | +2.5          | 490                 | +2.5                   |   |
| ron                    | 72.5                   | -2.5                   | 720            | -2.5                       | 520          | -2.5          | - 520 🖉             | -2.5                   |   |
| r <sub>on</sub> (max.) | +2.5                   | -2.5                   | 232k           | ±0.25                      | 300k         | ±0.25         | 870k                | ±0.25                  |   |



92C5-27667

Fig. 12 - Off-state switch input or output leakage current test circuit.





Fig.13 -- Test circuit for square-wave response.

\* Variation from aperfect switch, ron = 0 Ω.



9205-27612

Fig.14 – Typical sine wave response of  $V_{DD}$  = +7.5 V,  $V_{SS}$  = -7.5 V.



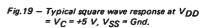
9205-27615

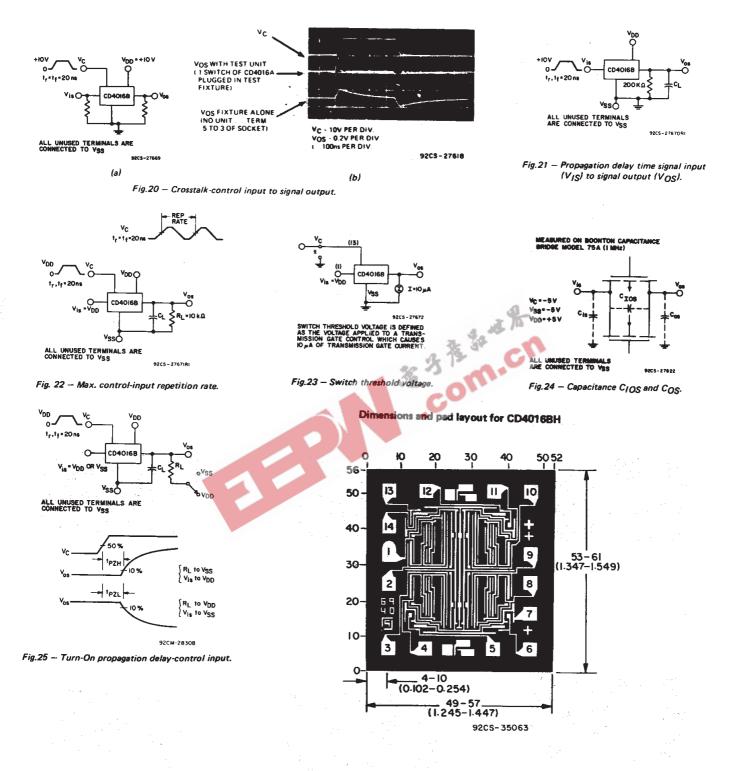
Fig. 17 - Typical square wave response at  $V_{DD} = V_C = +15 V$ , VSS = Gnd.



9205-27613

Fig. 15 – Typical sine wave response of  $V_{DD} = +5 V$ ,  $V_{SS} = -5 V$ .





SCALE: X = 100 ns/DIV Y = 5.0 V/DIV 92CS-27616 Fig.18 - Typical square wave response at V<sub>DD</sub> = V<sub>C</sub> = +10 V, V<sub>SS</sub> = Gnd.



92CS - 27614

Fig. 16 – Typical sine wave response of  $V_{DD}$  = +2.5 V,  $V_{SS}$  = -2.5 V.





Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils  $(10^{-3} \text{ inch})$ .

#### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.



Copyright © 1998, Texas Instruments Incorporated