FAIRCHILD

SEMICONDUCTOR

CD4028BC BCD-to-Decimal Decoder

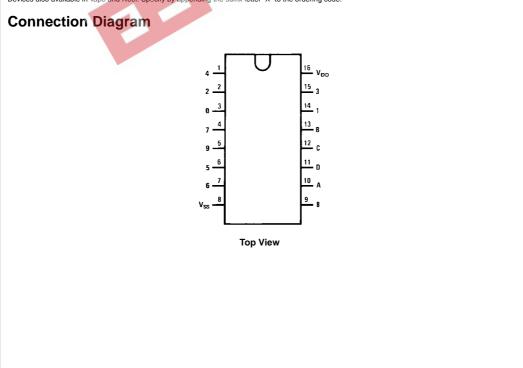
General Description

The CD4028BC is a BCD-to-decimal or binary-to-octal decoder consisting of 4 inputs, decoding logic gates, and 10 output buffers. A BCD code applied to the 4 inputs, A, B, C, and D, results in a high level at the selected 1-of-10 decimal decoded outputs. Similarly, a 3-bit binary code applied to inputs A, B, and C is decoded in octal at outputs 0–7. A high level signal at the D input inhibits octal decoding and causes outputs 0–7 to go LOW.

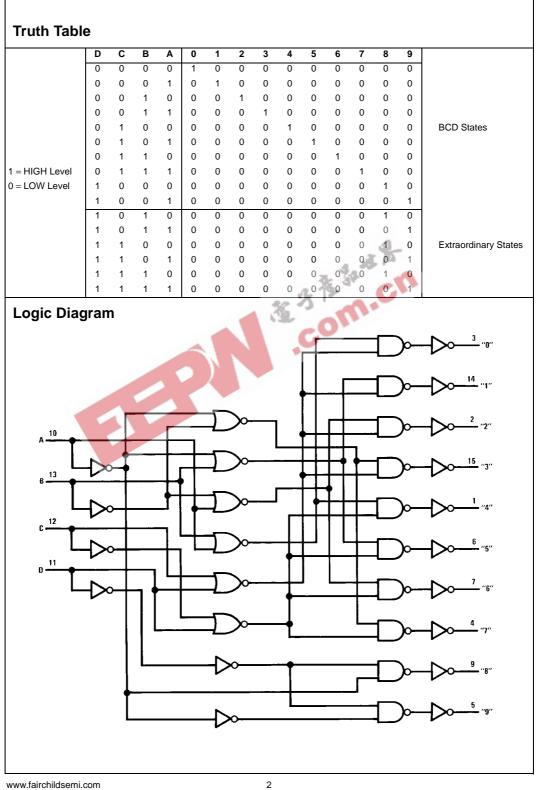
All inputs are protected against static discharge damage by diode clamps to V_{DD} and $V_{\text{SS}}.$

October 1987 Revised March 2002

Features


- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: fan out of 2 driving 74L or 1 driving 74LS
- Low power
- Glitch free outputs
- "Positive logic" on inputs and outputs

Applications


- Code conversion
- Address decoding
- Indicator-tube decoder

Ordering Code:

Order Number	Package Number			Package Description	
CD4028BCM	M16A	16-Lead Smal	I Outline Integ	grated Circuit (SOIC), JEDEC MS-012, 0.150" Narro	w
CD4028BCN	N16E	16-Lead Plast	ic Dual-In-Line	ne Package (PDIP), JEDEC MS-001, 0.300" Wide	
Devices also available	in Tape and Real Specify	by appending the	suffix letter "Y" to	a the ordering code	

CD4028BC

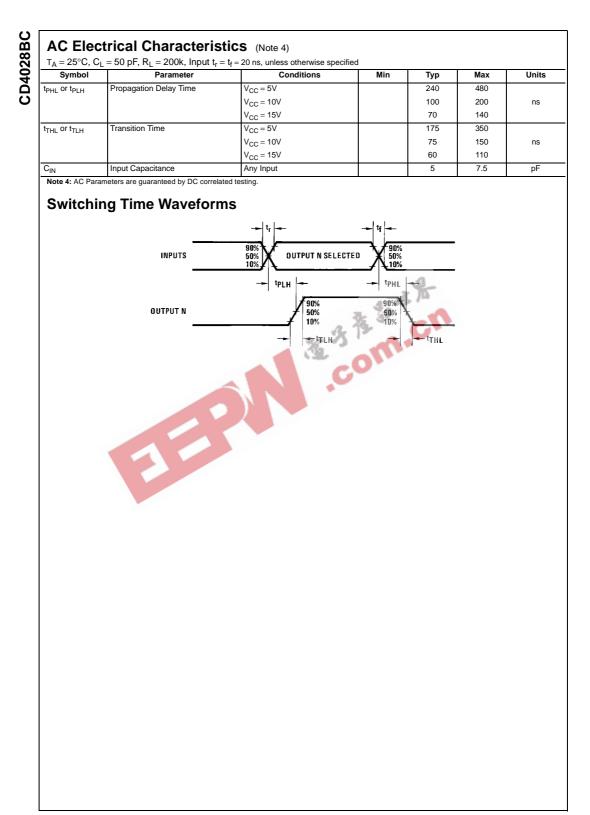
Absolute Maximum Ratings(Note 1) (Note 2)

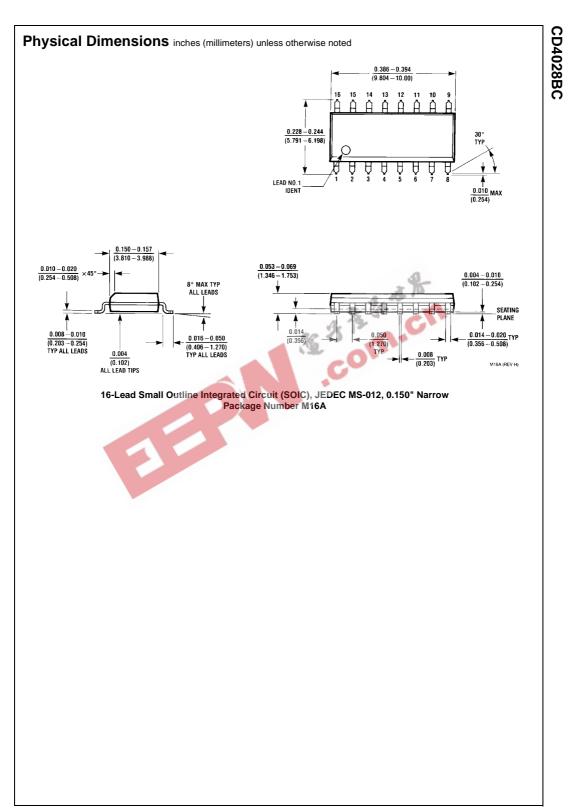
(Note 2)	
Supply Voltage (V _{DD})	-0.5 to +18V
Input Voltage (V _{IN})	–0.5 to $V_{\mbox{\scriptsize DD}}$ +0.5V
Storage Temperature Range (T _S)	$-65^{\circ}C$ to $+150^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

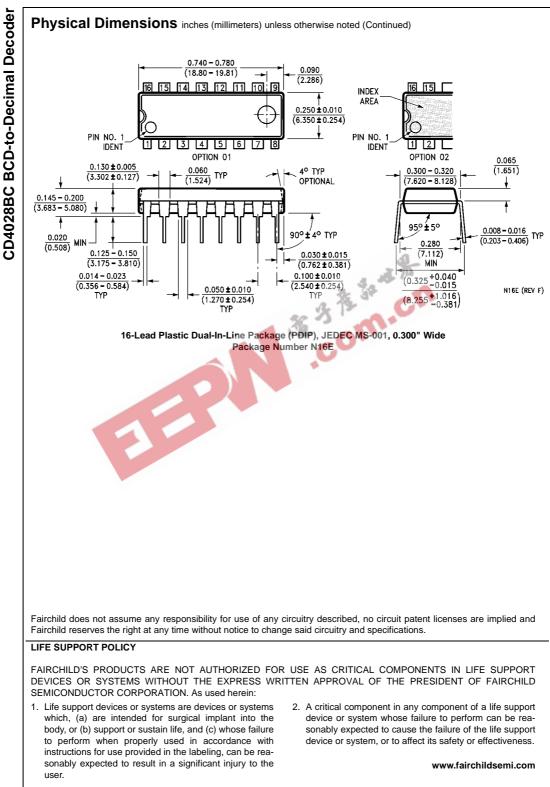
Recommended Operating Conditions (Note 2)

Supply Voltage (V _{DD})	3 to 15V
Input Voltage (V _{IN})	0 to $V_{DD}V$
Operating Temperature Range (T _A)	$-55^{\circ}C$ to $+125^{\circ}C$

CD4028BC


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.


Note 2: $V_{SS} = 0V$ unless otherwise specified.


Symbol	Parameter	Conditions	–55°C		+25°C			+125°C		Units
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device Current	$V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS}$		5		0.01	5		150	
		$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		10		0.01	10		300	μA
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		20		0.02	20		600	
V _{OL}	LOW Level Output Voltage	$ I_0 < 1 \ \mu A, \ V_{IL} = 0V, \ V_{IH} = V_{DD}$			4 1	5. /··				
		V _{DD} = 5V		0.05	\mathcal{L}	0	0.05		0.05	
		$V_{DD} = 10V$	1	0.05	-	0	0.05		0.05	V
		V _{DD} = 15V	0%	0.05	-	0	0.05		0.05	
V _{OH}	HIGH Level Output Voltage	$ I_0 < 1 \ \mu A, \ V_{IL} = 0V, \ V_{IH} = V_{DD}$								
		$V_{DD} = 5V$	4.95	• O	4.95	5		4.95		
		$V_{DD} = 10V$	9.95		9.95	10		9.95		V
		V _{DD} = 15V	14.95		14.95	15		14.95		
V _{IL}	LOW Level Input Voltage	l ₀ < 1 μA								
		$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2.25	1.5		1.5	
		$V_{DD} = 10V, V_O = 1V \text{ or } 9V$		3.0		4.5	3.0		3.0	V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0		6.75	4.0		4.0	
VIH	HIGH Level Input Voltage	l ₀ < 1 μA								
		$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	2.75		3.5		
		$V_{DD} = 10V$, $V_O = 1V$ or $9V$	7.0		7.0	5.5		7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0	8.25		11.0		
I _{OL}	LOW Level Output Current	$V_{IH} = V_{DD}, V_{IL} = 0V$								
	(Note 3)	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	1.0		0.36		
		$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.6		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	6.8		2.4		
I _{OH}	HIGH Level Output Current	$V_{IH} = V_{DD}, V_{IL} = 0V$								
	(Note 3)	$V_{DD} = 5V, V_{O} = 4.6V$	-0.25		-0.2	-0.4		-0.14		
		$V_{DD} = 10V, V_{O} = 9.5V$	-0.62		-0.5	-1.0		-0.35		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-1.8		-1.5	-3.0		-1.1		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1			-0.1		-1.0	
		$V_{DD} = 15V, V_{IN} = 15V$		0.1			0.1		1.0	μA

DC Electrical Characteristics (Note 2)

Note 3: I_{OL} and I_{OH} are tested one output at a time.

www.fairchildsemi.com