

October 1987 Revised January 1999

CD40106BC Hex Schmitt Trigger

General Description

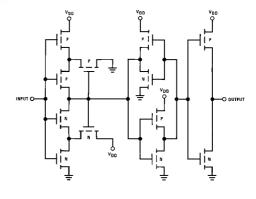
The CD40106BC Hex Schmitt Trigger is a monolithic complementary MOS (CMOS) integrated circuit constructed with N and P-channel enhancement transistors. The positive and negative-going threshold voltages, V_{T+} and V_{T-} , show low variation with respect to temperature (typ 0.0005V/°C at V_{DD} = 10V), and hysteresis, $V_{T+}-V_{T-} \geq 0.2$ V_{DD} is guaranteed.

All inputs are protected from damage due to static discharge by diode clamps to $\rm V_{DD}$ and $\rm V_{SS}.$

Features

- Wide supply voltage range: 3V to 15V
- High noise immunity: 0.7 V_{DD} (typ.)
- Low power TTL compatibility:
 - Fan out of 2 driving 74L or 1 driving 74LS
- Hysteresis: 0.4 V_{DD} (typ.),
 - $0.2~\mathrm{V}_\mathrm{DD}$ guaranteed
- Equivalent to MM74C14
- Equivalent to MC14584B

Ordering Code:


Order Number	Package Number	Package Description
CD40106BCM	M14A	14-Lead Small Outline integrated Circuit (SOIC), JEDEC MS-120, 0.150" Narrow Body
CD40106BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code

Connection Diagram

Pin Assignments for DIP and SOIC VDD 14 13 12 11 10 9 8 Top View

Schematic Diagram

Absolute Maximum Ratings(Note 1)

(Note 2)

 $\begin{array}{ll} \text{DC Supply Voltage (V}_{\text{DD}}) & -0.5 \text{ to } +18 \text{ V}_{\text{DC}} \\ \text{Input Voltage (V}_{\text{IN}}) & -0.5 \text{ to V}_{\text{DD}} +0.5 \text{ V}_{\text{DC}} \\ \text{Storage Temperature Range (T}_{\text{S}}) & -65^{\circ}\text{C to } +150^{\circ}\text{C} \end{array}$

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 2)

 $\begin{array}{ll} \text{DC Supply Voltage (V}_{\text{DD}}) & 3 \text{ to } 15 \text{ V}_{\text{DC}} \\ \text{Input Voltage (V}_{\text{IN}}) & 0 \text{ to } \text{V}_{\text{DD}} \text{ V}_{\text{DC}} \\ \text{Operating Temperature Range (T}_{\text{A}}) & -40^{\circ}\text{C to } +85^{\circ}\text{C} \\ \end{array}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

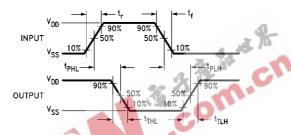
Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 3)

Symbol	Parameter	Conditions	–40°C		+25°C			+ 85°C		Units
- Cyllibol	T drameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Jillo
I_{DD}	Quiescent Device Current	$V_{DD} = 5V$		4.0			4.0		30	μΑ
		$V_{DD} = 10V$		8.0			8.0		60	μΑ
		$V_{DD} = 15V$		16.0	-	S	16.0		120	μΑ
V _{OL}	LOW Level Output	I _O < 1 μA		- 40	-94	110				
	Voltage	$V_{DD} = 5V$		0.05	3	-	0.05		0.05	V
		$V_{DD} = 10V$	12.	0.05			0.05		0.05	V
		V _{DD} = 15V	72	0.05	A .		0.05		0.05	V
V _{OH}	HIGH Level Output	I _O < 1 μA	p		100					
	Voltage	$V_{DD} = 5V$	4.95	0,	4.95	5		4.95		V
		$V_{DD} = 10V$	9.95		9.95	10		0.95		V
		V _{DD} = 15V	14.95		14.95	15		14.95		V
V _{T-}	Negative-Going Threshold	$V_{DD} = 5V, V_{O} = 4.5V$	0.7	2.0	0.7	1.4	2.0	0.7	2.0	V
	Voltage	$V_{DD} = 10V, V_{O} = 9V$	1.4	4.0	1.4	3.2	4.0	1.4	4.0	V
		$V_{DD} = 15V, V_{O} = 13.5V$	2.1	6.0	2.1	5.0	6.0	2.1	6.0	V
V_{T+}	Positive-Going Threshold	$V_{DD} = 5V, V_{O} = 0.5V$	3.0	4.3	3.0	3.6	4.3	3.0	4.3	V
	Voltage	$V_{DD} = 10V, V_{O} = 1V$	6.0	8.6	6.0	6.8	8.6	6.0	8.6	V
		V _{DD} = 15V, V _O = 1.5V	9.0	12.9	9.0	10.0	12.9	9.0	12.9	V
V _H	Hysteresis (V _{T+} – V _{T-})	$V_{DD} = 5V$	1.0	3.6	1.0	2.2	3.6	1.0	3.6	V
	Voltage	$V_{DD} = 10V$	2.0	7.2	2.0	3.6	7.2	2.0	7.2	V
		V _{DD} = 15V	3.0	10.8	3.0	5.0	10.8	3.0	10.8	V
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.52		0.44	0.88		0.36		mA
	Current (Note 3)	$V_{DD} = 10V, V_{O} = 0.5V$	1.3		1.1	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	3.6		3.0	8.8		2.4		mA
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.52		-0.44	-0.88		-0.36		mA
	Current (Note 3)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.3		-1.1	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-3.6		-3.0	-8.8		-2.4		mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.30		-10 ⁻⁵	-0.30		-1.0	μА
		$V_{DD} = 15V, V_{IN} = 15V$		0.30		10 ⁻⁵	0.30		1.0	μΑ
	L	I			L		L	·		

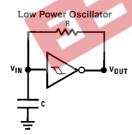
Note 3: I_{OH} and I_{OL} are tested one output at a time.

AC Electrical Characteristics (Note 4)

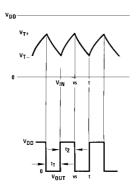

 $T_A = 25$ °C, $C_L = 50$ pF, $R_L = 200$ k, t_r and $t_f = 20$ ns, unless otherwise specified

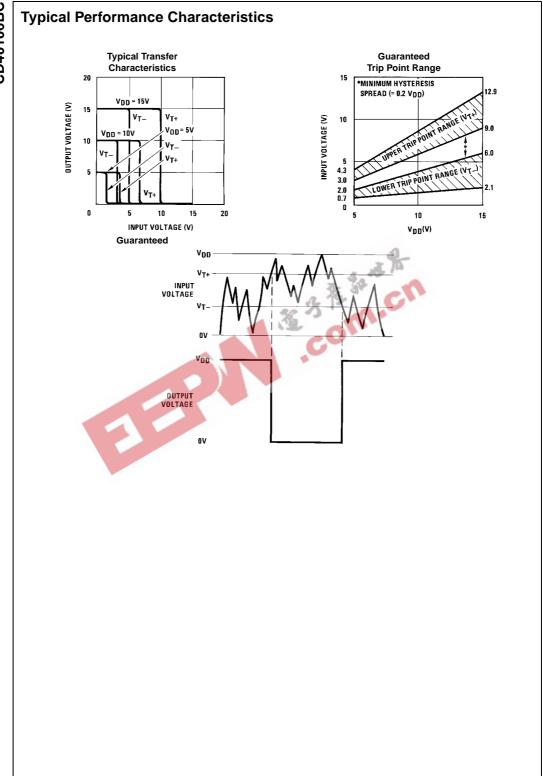
Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} or t _{PLH}	Propagation Delay Time from	$V_{DD} = 5V$		220	400	ns
	Input to Output	V _{DD} = 10V		80	200	ns
		V _{DD} = 15V		70	160	ns
t _{THL} or t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	ns
		$V_{DD} = 10V$ $V_{DD} = 15V$		50	100	ns
		$V_{DD} = 15V$		40	80	ns
C _{IN}	Average Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation Capacity	Any Gate (Note 5)		14		pF

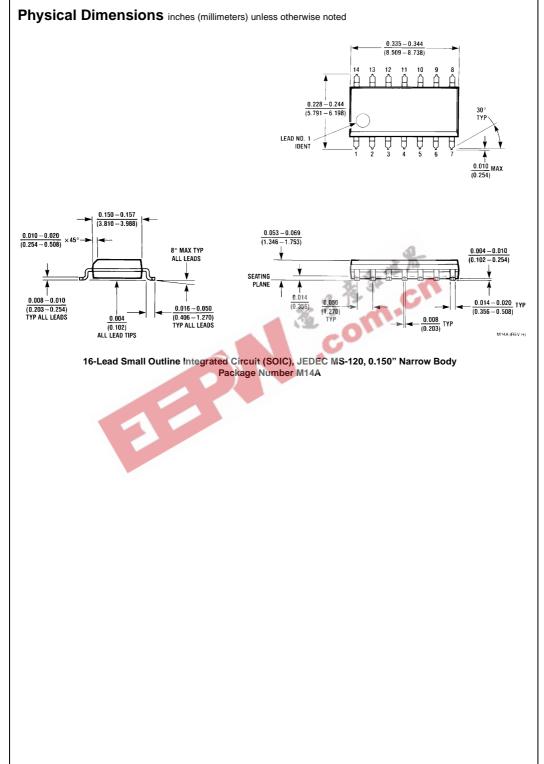
Note 4: AC Parameters are guaranteed by DC correlated testing.


Note 5: C_{PD} determines the no load ac power consumption of any CMOS device. For complete explanation see 74C Family Characteristics Application Note, AN-90.

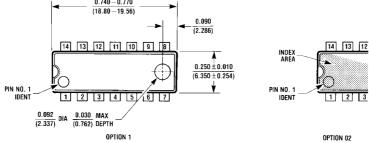
Switching Time Waveforms

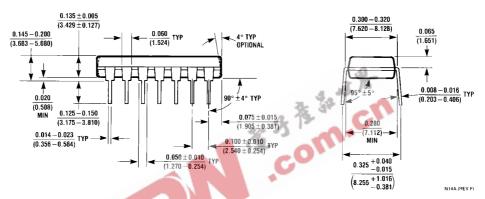

 $t_{\text{r}}=t_{\text{f}}=20\;\text{ns}$


Typical Applications



$$\begin{split} t_1 &\approx \text{RC } \ell \text{ n} \frac{V_{T+}}{V_{T-}} \\ t_2 &\approx \text{RC } \ell \text{ n} \frac{V_{DD} - V_{T-}}{V_{DD} - V_{T+}} \\ f &\approx \frac{1}{\text{RC } \ell \text{ n}} \frac{V_{T+} \left(V_{DD} - V_{T-}\right)}{V_{T-} \left(V_{DD} - V_{T+}\right)} \end{split}$$


Note: The equations assume $t_1 + t_2 >> t_{PHL} + t_{PLH}$



Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com