
CD54/74HC4543 CD54/74HCT4543

File Number 1822

High-Speed CMOS Logic

BCD-to-7 Segment Latch/ Decoder/Driver for LCDs

Type Features:

- Input latches for BCD code storage
 Blanking capability
- FUNCTIONAL DIAGRAM

Phase input for complementing outputs

The RCA CD54/74HC4543 and CD54/74HCT4543 highspeed silicon-gate devices are BCD-to-7 segment latch/decoder/drivers designed primarily for directly driving liquidcrystal displays. They have an active-high disable input (LD), an active high blanking input (BI) and a phase input (PH) to which a square wave is applied for liquid-crystal applications. This square wave is also applied to the backplane of the liquid-crystal display.

These devices can also be used, in conjunction with current amplifying devices, for driving LEDs, incandescent, fluorescent, and gas-discharge displays. For these applications the phase input provides a means for obtaining active-high or active-low segment outputs. (See Function Table.)

The CD54HC/HCT4543 are supplied in 16-lead ceramic dual-in-line frit-seal packages (F suffix). The CD74HC/HCT-4543 are supplied in 16-lead dual-in-line plastic packages (E suffix) and in 16-lead dual-in-line surface-mount plastic packages (M suffix). Both types are also available in chip form (H suffix).

FUNCTION TABLE

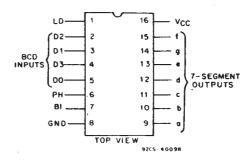
INPUTS OUTPUT DISPLAY LD 01 PH D3 D: 0 O х X Blant Ł ε н н н н н н **I I I I I I I I I** L L L L L 0 н L ι L н L ε ι Η £ н н н ь H H L H н H H н н н н ι Η н L £ £ ь Н н ι L L н L H н н н 5 L H H н . н н н н н н 6 L 1 н н н н τ **T T T T T T T T** L H H L н н L L H L H Ł н н н н 9 L ٤ H н ι Ł Blan н н Biani 0 L L н H H 1 L H Ł Black Blani Ł L н н н н L Blank н Blan х inverse of abo as as a ibove

Depends upon the BCD code previously applied when LD + High

Family Features:

92CS-25087

 Fanout (over temperature range): Standard outputs - 10 LSTTL loads Bus driver outputs - 15 LSTTL loads
 Wide operating temperature range:


SCHS281

- CD74HC/HCT: -40 to +85° C
- Balanced propagation delay and transition times
 Significant power reduction compared to LSTTL. logic ICs

ISTRUMENTS

Data sheet acquired from Harris Semiconductor

- Alternate source is Philips/Signetics
- CD54HC/CD74HC types: 2 to 6 V operation High noise immunity: Ν_{IL}=30%, Ν_{IH}=30% of V_{CC}; @ V_{CC}=5 V
- CD54HCT/CD74HCT types: 4.5 to 5.5 V operation Direct LSTTL input logic compatibility V_{IL}=0.8 V max., V_{IH}=2 V min. CMOS input compatibility I_I≤1 µA @ V_{OL}, V_{OH}

TERMINAL ASSIGNMENT

This data sheet is applicable to the CD74HCT4543. The CD54HC4543 and CD54HCT4543 were not acquired from Harris Semiconductor. See SCHS217 for information on the CD74HCT4543.

Technical Data

CD54/74HC4543 CD54/74HCT4543

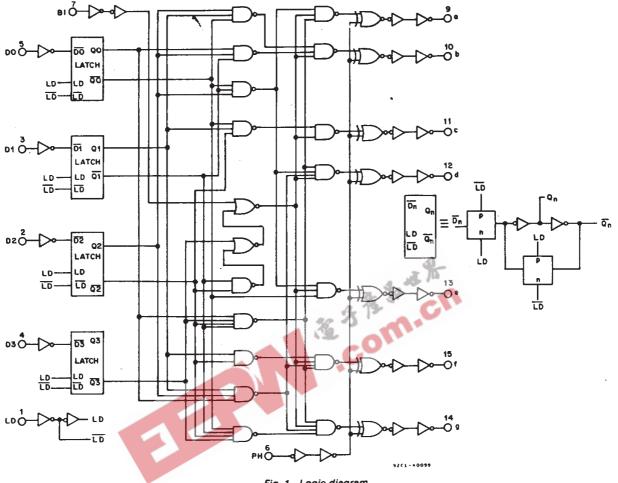


Fig. 1 - Logic diagram.

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE, (Vcc):	
(Voltages referenced to ground)	0.5 to +7 V
DC INPUT DIODE CURRENT, IIK (FOR VI < -0.5 V OR VI > Vcc +0.5 V)	±20 mA
DC OUTPUT DIODE CURRENT, Iok (FOR Vo < -0.5 V OR Vo > Vcc +0.5 V)	±20 mA
DC DRAIN CURRENT, PER OUTPUT (I.) (FOR -0.5 V < V.	±25 mA
DC Vcc OR GROUND CURRENT (Icc)	±50 mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -40 to +60°C (PACKAGE TYPE E)	
For T _A = +60 to +85°C (PACKAGE TYPE E)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -55 to +100°C (PACKAGE TYPE F,H)	
For T _A = +100 to +125°C (PACKAGE TYPE F,H)	Derate Linearly at 8 mW/°C to 300 mW
For T _A = -40 to +70°C (PACKAGE TYPE M)	
For T _A = +70 to +125°C (PACKAGE TYPE M)	Derate Linearly at 6 mW/°C to 70 mW
OPERATING-TEMPERATURE RANGE (TA):	
PACKAGE TYPE F,H	
PACKAGE TYPE E.M	
STORAGE TEMPERATURE (Tag)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 \pm 1/32 in. (1.59 \pm 0.79 mm) from case for 10 s max.	
Unit inserted into a PC Board (min. thickness 1/16 in., 1.59 mm)	
with solder contacting lead tips only	

CD54/74HC4543 CD54/74HCT4543

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

CHARACTERISTIC	LII		
	MIN.	MAX.	
Supply-Voltage Range (For TA=Full Package Temperature Range)		1	1
Vcc:*			
CD54/74HC Types	2	6	
CD54/74HCT Types	4.5	5.5	V
DC Input or Output Voltage, VI, Vo	0	Vcc	v
Operating Temperature, TA:			
CD74 Types	-40	+85	
CD54 Types	-55	+125	°C
Input Rise and Fall Times, t.t.		1 -	1
at 2 V	0	1000	
at 4.5 V	0	500	ns
at 6 V	0	400	

SWITCHING CHARACTERISTICS (Vcc=5 V, TA=25°C, Input t,t=6 ne)

at 6 V		0	400		
*Unless otherwise specified, all voltages are referenced	d to Ground.		3 %		
SWITCHING CHARACTERISTICS (Vcc=5 V, TA=2	25°C, Input t,t=6 ns)	3 12 34	.cn		
		C	TYPICAL	VALUES	1
CHARACTERISTIC		C (pF)	HC	НСТ	UNITS
Propagation Delay:	T PLH	15	28	33	
D _n to Output	T PHL	15	20		
LD to Output	трін Триі	15	31	32	
	tern	<u> </u>	<u> </u>		- ns
BI to Output	арсн Трнг	15	22	27	
	t _{PLH}	15	17	27	
PH to Output	t _{PHL}	13	17	21	
Power Dissipation Capacitance*	Cpd	-	52	54	pF

*CPD is used to determine the dynamic power consumption, per package.

 $P_D = C_{PD} V_{cc}^2 fi + \Sigma C_L V_{cc}^2 f_o$ where f_i = input frequency

fo = output frequency

CL = output load capacitance

V_{cc} = supply voltage.

PRE-REQUISITE FOR SWITCHING FUNCTION

			LIMITS												
		TEST	25° C				-4	l0°C t	o +85	°C	-5	1			
CHARACTERI	STIC	CONDITIONS	HC		НСТ		74HC		74HCT		54	54HC		ICT	UNITS
		Vcc (V)	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	1
Setup Time,	tsu	2	60	- 1	—	Γ-	75		—	—	90			-	
D _n to LD		4.5	12	_	12		15		15	-	18		18	_]
		6	10	-	_	_	13	_	_	_	15	_			1
Hold Time,	tH	2	30	-	-	-	40	-	-	—	45	- 1	-	-	
D _n to LD		4.5	6	-	8	-	8	-	10	_	9	_	12		ns
		6	5		_	-	7	-	_	_	8	_			
Latch Disable		2	50		—	- 1	65	-		-	75		-	-	1
Pulse Width,	tw	4.5	10	_	10	_	13	_	13	-	15	-	15	-	
		6	9	_			11	—	_	-	13	-	_	_	

_Technical Data

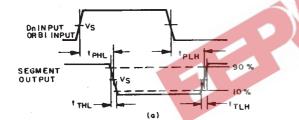
CD54/74HC4543 CD54/74HCT4543

		CD74HC4543/CD54HC4543							CD74HCT4543/CD54HCT4543																											
	1	TEST IDITIO	NS		IC/54		74) TYI	HC PES		HC	TEST CONDITIO	45	74HCT/54HCT TYPES																				74HCT TYPES		ICT PES	
CHARACTERISTIC	v.	ю	Voc		+25° C	;		0/ 5°C	I -	5/ 5°C	Vi Vcc			+25°C		-40/ +85° (UNITS																
	•	mA	V	Min	Тур	Max	Min	Max	Min	Max	V	v	Min	Тур	Max	Min	Max	Min	Max																	
High-Level			2	1.5	—	-	1.5	-	1.5		·	4.5		1																						
Input Voltage VIH			4.5	3.15			3.15		3.15	_	-	to	2	-	-	2	-	2	-	V V																
			6	4.2		<u> </u>	4.2		4.2			5.5			L		 																			
Low-Level			2		_	0.5	_	0.5		0.5		4.5																								
Input Voltage VIL			4.5		_	1.35		1.35	<u> -</u>	1.35	-	to	-	-	0.8	-	0.8		0.8	v																
		 	6	<u> </u>	-	1.6	<u> </u>	1.8	<u> -</u> _	1.8		5.5	-				L		<u> </u>																	
High-Level	VR		2	1.9			1.9		1.9	-	VaL	JIN .																								
Output Voltage VoH	or	-0.02	4.5	4.4		-	4.4	<u> -</u>	4.4	-	or	4.5	4.4	-		4.4	-	4.4	-	v																
CMOS Loads	VIH	L	6	5.9	_		5.9	-	5.9	$\overline{\tau}_{\mathcal{H}}$	VIH	C	1. T				<u> </u>																			
	, ViL		ļ					-	22	-	Vic			[
TTL Loads	or	-1	4.5	3.98	-	-	3.84	-	3.7	ľ		4.5	4.5	4.5	4.5	3.98	-	-	3.84	-	3.7	-	v													
Non-Standard Output	VIH	-1.3	6	5.48	-	-	5.34	-	5.2	1	Vie			<u> </u>																						
Low-Leve!	ViL		2	-	-	0.1	-	0.1	-	0.1	۷ıL																									
Output Voltage VoL	or	0.02	4.5	_		0.1	-	0.1		0.1	or	4.5	-	-	0.1	-	0.1		0.1	v																
CMOS Loads	VIH		6	-	-	0.1	-	0.1		0.1	Vin			ļ	· .		ļ		ļ																	
	ViL		\sim					<u> </u>	ļ	ļ	۷ıL			i .																						
TTL Loads	or		4.5	-	-	0.26	[-	0.33	-	0.4	or	4.5	-	-	0.26		0.33	-	0.4	v																
Non-Standard Output	VIH	1,3	6	-		0.26	_	0.33	_	0.4	Vier			L			<u> </u>																			
Input Leakage	Vcc										Any																									
Current I	or		6	_	_	±0.1	_	±1	_	±1	Voltage 5.5		_	_	±0.1	_	±1		±1	μA																
	Gnd				l						Between									-																
		L	L	L				ļ			Vcc & Gnd					L																				
Quiescent	Vcc	1									Vcc																									
Device Current fcc	or	0	6		-	8	-	80	-	160	or	5.5	-	-	8	-	80	-	160	μA																
	Gnd						I				Gnd				L																					
Additional										1		4.5																								
Quiescent Device											Vcc -2.1	to	_	100	360		450	_	490	μA																
Current per input	1									-		5.5																								
pin: 1 unit load ∆lcc*																																				

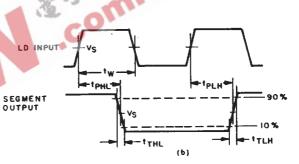
STATIC ELECTRICAL CHARACTERISTICS

*For dual-supply systems theoretical worst case (V₁ = 2.4 V, V_{CC} = 5.5 V) specification is 1.8 mA.

HCT Input Loading Table

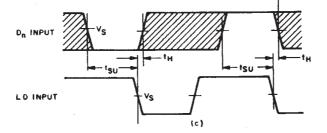

Input	Unit Loads*
D0, D1, D2	1
D3, BI	0.5
PH	1.25
LD	1.5

*Unit Load is ΔI_{cc} limit specified in Static Characteristics Chart, e.g., 360 μ A max. @ 25°C.


CD54/74HC4543 CD54/74HCT4543

SWITCHING CHARACTERISTICS (CL=50 pF, Input t,t=6 ns)

								LIM	ITS									
				25°C			25°C -40°C to +85°C -5									+125	°C]
CHARACTERIS	STIC	Vcc	H	C	H	CT	74	HC	74H	ICT	54	HC	54H	ICT	UNITS			
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.				
Propagation Delay,	t _{PLH}	2	- 1	340	-	-	-	425	-	-	-	510	-	-	· · ·			
D _n to Output	T PHL	4.5		68	_	80		85	-	100	<u> </u>	102	-	120	ns			
. •		6	-	58	-	-	_	72	—	-		87	—	<u> </u>]			
	tech	2	- 1	370	—	-	-	465	-	-	-	555	-	—				
LD to Output	t enc	4.5	_	74	-	77	_	93		96	-	111	-	116	ns			
•		6		63	_	_	_	79	-		-	94	-	-				
	t PLH	2	1-	265	1-	-	-	330	- 1	- 1	—	400		-				
BI to Output	t PHL	4.5	-	53	_	66	-	66	_	83		80		99	ns			
•		6		45	_	_	_	56	_	-	_	68		-				
	t PLH	2	- 1	200	- 1	-	-	250	-	-	-	300		-				
PH to Output	T PHL	4.5	_	40	_	66	-	50	1	83	-	60	-	99	ns			
•		6	_	34	-	_] —	43	_	-	-	51		-				
	t _{TLH}	2	1	250	-	-	-	315	-	-		375	-					
Transition Time	t THL	4.5		50	_	50	-	63	1.1	63	-	75	-	75	ns			
		6	_	43	-	<u> </u>	-	54	4	-	A	64	-					
Input Capacitance	Cı		1_	10		10	- 1	10	P	10		10	- 1	10	pF			



(a) WAVEFORMS SHOWING THE ADDRESS AND BLANKING (D_n. BI) TO OUTPUT PROPAGATION DELAYS AND THE OUTPUT TRANSITION TIMES.

(b) WAVEFORMS SHOWING THE LATCH DISABLE INPUT (LD) TO OUTPUT PROPAGATION DELAYS AND THE OUTPUT TRANSITION TIMES.

9208-40103

NOTE: THE SHADED AREAS INDICATE WHEN THE INPUT IS PERMITTED TO CHANGE FOR PREDICTABLE OUTPUT PERFORMANCE.

(C) WAVEFORMS SHOWING THE ADDRESS (D_n) TO LATCH DISABLE (LD) INPUT SET-UP AND HOLD TIMES.

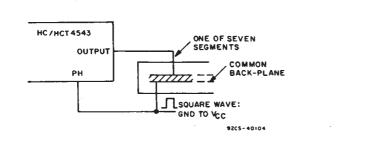

	54/74HC	54/74HCT
Input Level	Vcc	3 V
Switching Voltage, Vs	50% V _{cc}	1.3 V

Fig. 2 - AC wavelorms.

Technical Data

CD54/74HC4543 CD54/74HCT4543

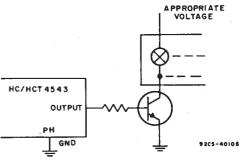


Fig. 3 - Connection to liquid-crystal (LCD) display readout.

Fig. 4 - Connection to incandescent display readout.

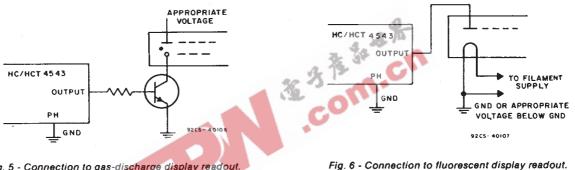


Fig. 5 - Connection to gas-discharge display readout.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated