

Connection Diagram

Schematic Diagram

© 2002 Fairchild Semiconductor Corporation DS005661 www.fairchildsemi.com

November 1983

Absolute Maximum Ratings(Note 1) (Note 2)

V _{DD} Supply Voltage	-0.5V to +18V
V _{IN} Input Voltage	$-0.5 V$ to $V_{\mbox{\scriptsize DD}} + 0.5 V$
T _S Storage Temperature Range	$-65^{\circ}C$ to $+$ 150 $^{\circ}C$
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions (Note 2)

V _{DD} Supply Voltage	3V to 15V
V _{IN} Input Voltage	0V to V _{DD}
T _A Operating Temperature Range	$-55^{\circ}C$ to $+125^{\circ}C$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

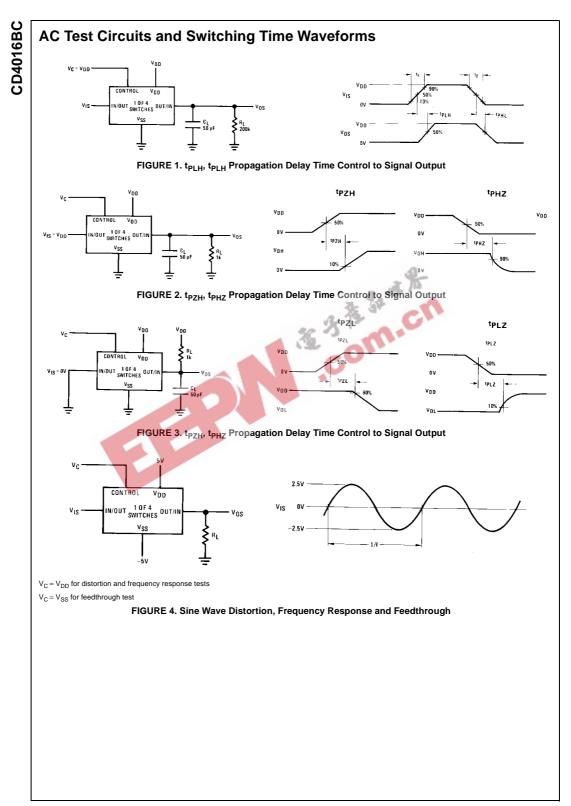
Note 2: $V_{SS} = 0V$ unless otherwise specified.

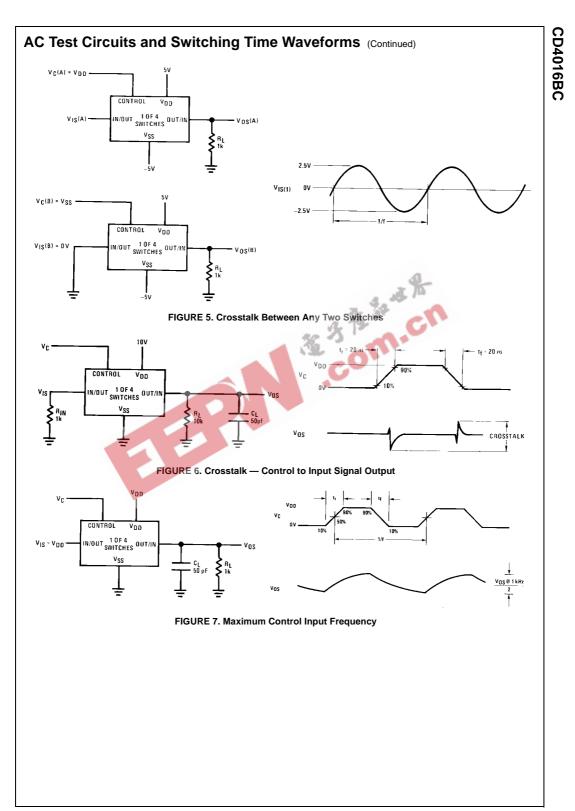
Symbol	Parameter	Conditions	–55°C		25°C			+125°C		Units
Cymbol			Min	Max	Min	Тур	Max	Min	Max	onito
I _{DD}	Quiescent Device	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		0.25		0.01	0.25		7.5	μA
	Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		0.5		0.01	0.5		15	μΑ
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		1.0		0.01	1.0		30	μΑ
Signal In	puts and Outputs			. A.	10					
R _{ON}	"ON" Resistance	$R_L = 10k\Omega$ to $(V_{DD} - V_{SS})/2$	4	e 31	P	77.				
		$V_{C} = V_{DD}, V_{IS} = V_{SS} \text{ or } V_{DD}$	Se 1	3		6 A A				
		V _{DD} = 10V	2	600		250	660		960	Ω
		V _{DD} = 15V	-	360	1 m	200	400		600	Ω
		$R_L = 10k\Omega$ to $(V_{DD} - V_{SS})/2$	0	2.						
		$V_{C} = V_{DD}$	\sim							
		$V_{DD} = 10V, V_{IS} = 4.75 \text{ to } 5.25V$	T	1870		850	2000		2600	Ω
		$V_{DD} = 15V, V_{IS} = 7.25 \text{ to } 7.75V$	1	775		400	850		1230	Ω
ΔR _{ON}	∆"ON" Resistance	$R_L = 10k\Omega$ to $(V_{DD} - V_{SS})/2$								
	Between any 2 of	$V_{C} = V_{DD}$, $V_{IS} = V_{SS}$ to V_{DD}								
	4 Switches	$V_{DD} = 10V$				15				Ω
	(In Same Package)	V _{DD} = 15V				10				Ω
I _{IS}	Input or Output	$V_{\rm C} = 0, V_{\rm DD} = 15V$		±50		±0.1	±50		±500	nA
	Leakage	V _{IS} = 0V or 15V,								
	Switch "OFF"	$V_{OS} = 15V \text{ or } 0V$								
Control I	nputs	•								
VILC	LOW Level Input	$V_{IS} = V_{SS}$ and V_{DD}								
	Voltage	$V_{OS} = V_{DD}$ and V_{SS}								
		$I_{IS} = \pm 10 \ \mu A$								
		$V_{DD} = 5V$		0.9			0.7		0.5	V
		$V_{DD} = 10V$		0.9			0.7		0.5	V
		$V_{DD} = 15V$		0.9			0.7		0.5	V
VIHC	HIGH Level Input	$V_{DD} = 5V$	3.5		3.5			3.5		V
	Voltage	$V_{DD} = 10V$	7.0		7.0			7.0		V
		$V_{DD} = 15V$	11.0		11.0			11.0		V
		(Note 3) and Table 1								
I _{IN}	Input Current	$V_{CC} - V_{SS} = 15V$		±0.1	1	±10 ⁻⁵	±0.1	1	±1.0	μA
		$V_{DD} \ge V_{IS} \ge V_{SS}$								
		$V_{DD} \ge V_C \ge V_{SS}$								

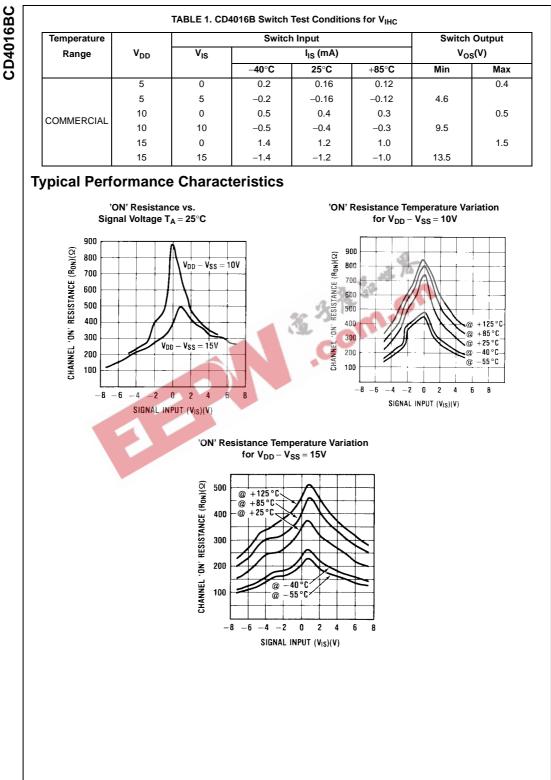
DC Electrical Characteristics (Note 2)

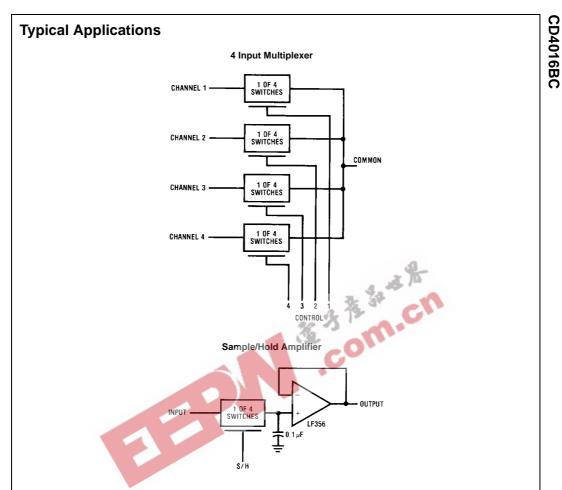
Note 3: If the smitch input is need at V_{DD} , V_{HC} is the control input even that win cause the switch output to meet the standard B series V_{OH} and V_{OH} output levels. If the analog switch input is connected to V_{SS} , V_{HC} is the control input level — which allows the switch to sink standard "B" series $|I_{OH}|$, HIGH level current, and still maintain a $V_{OL} \leq$ "B" series. These currents are shown in Table 1.

Symbol	, $t_r = t_f = 20$ ns and $V_{SS} = 0V$ unless c Parameter	Conditions	Min	Тур	Max	Units
PHL, t _{PLH}	Propagation Delay Time	$V_{C} = V_{DD}, C_{L} = 50 \text{ pF}, \text{ (Figure 1)}$				
	Signal Input to Signal Output	$R_L = 200k$				
		$V_{DD} = 5V$		58	100	ns
		V _{DD} = 10V		27	50	ns
		$V_{DD} = 15V$		20	40	ns
t _{PZH} , t _{PZL}	Propagation Delay Time	$R_L = 1.0 \text{ k}\Omega$, $C_L = 50 \text{ pF}$, (Figure 2, Figure 3)				
	Control Input to Signal	$V_{DD} = 5V$		20	50	ns
	Output HIGH Impedance to	$V_{DD} = 10V$		18	40	ns
	Logical Level	$V_{DD} = 15V$		17	35	ns
t _{PHZ} , t _{PLZ}	Propagation Delay Time	$R_L = 1.0 \text{ k}\Omega$, $C_L = 50 \text{ pF}$, (Figure 2, Figure 3)				
	Control Input to Signal	$V_{DD} = 5V$		15	40	ns
	Output Logical Level to	$V_{DD} = 10V$		11	25	ns
	HIGH Impedance	$V_{DD} = 15V$		10	22	ns
	Sine Wave Distortion	$V_{C} = V_{DD} = 5V, V_{SS} = -5$		0.4		%
		$R_L = 10 \text{ k}\Omega$, $V_{IS} = 5 \text{ V}_{P-P}$, $f = 1 \text{ kHz}$,				
		(Figure 4)		-		
	Frequency Response — Switch	$V_{C} = V_{DD} = 5V, V_{SS} = -5V,$	10.11	40		MHz
	"ON" (Frequency at -3 dB)	$R_{L} = 1 \text{ k}\Omega, V_{IS} = 5 V_{P-P},$		A		
		20 Log ₁₀ V _{OS} /V _{OS} (1 kHz) –dB,	- C.			
		(Figure 4)				
	Feedthrough — Switch "OFF"	$V_{DD} = 5V, V_{C} = V_{SS} = -5V,$		1.25		MHz
	(Frequency at -50 dB)	$R_{L} = 1 \text{ k}\Omega, V_{IS} = 5 V_{P-P},$				
		20 Log_{10} (V _{OS} /V _{IS}) = -50 dB,				
		(Figure 4)				
	Crosstalk Between Any Two	$V_{DD} = V_{C(A)} = 5V; V_{SS} = V_{C(B)} = -5V,$		0.9		MHz
	Switches (Frequency at -50 dB)	$R_L = 1 k\Omega V_{IS(A)} = 5 V_{P-P}$				
		20 $Log_{10} (V_{OS(B)}/V_{OS(A)}) = -50 \text{ dB},$				
		(Figure 5)				
	Crosstalk; Control Input to	$V_{DD} = 10V, R_{L} = 10 k\Omega$		150		mV _{P-P}
	Signal Output	$R_{IN} = 1 k\Omega$, $V_{CC} = 10V$ Square Wave,				
		$C_L = 50 \text{ pF}$ (Figure 6)				
	Maximum Control Input	$R_{L} = 1 k\Omega, C_{L} = 50 pF, (Figure 7)$				
		$V_{OS(f)} = \frac{1}{2} V_{OS}(1 \text{ kHz})$				
		$V_{DD} = 5V$		6.5		MHz
		$V_{DD} = 10V$		8.0		MHz
		$V_{DD} = 15V$		9.0		MHz
Cis	Signal Input Capacitance			4		pF
Cos	Signal Output Capacitance	V _{DD} = 10V		4		pF
	Feedthrough Capacitance	$V_{\rm C} = 0V$		0.2		pF
	Control Input Capacitance			5	7.5	pF

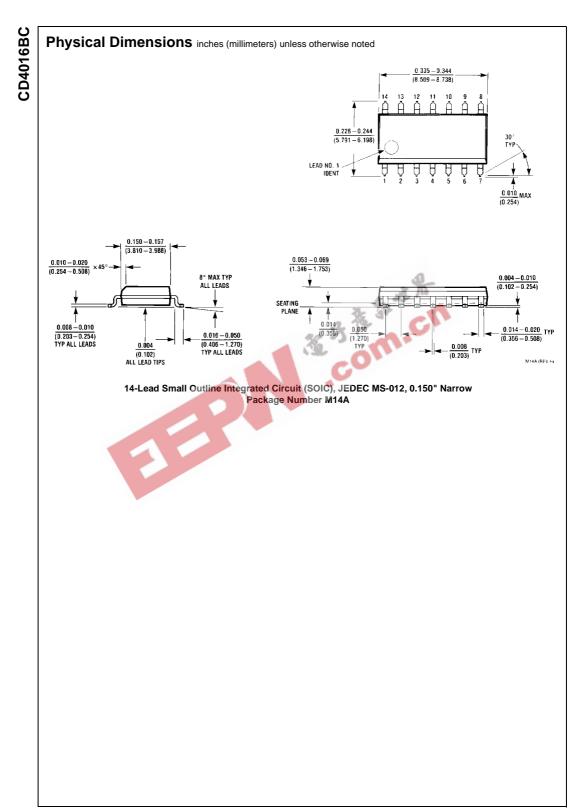

Note 4: AC Parameters are guaranteed by DC correlated testing.

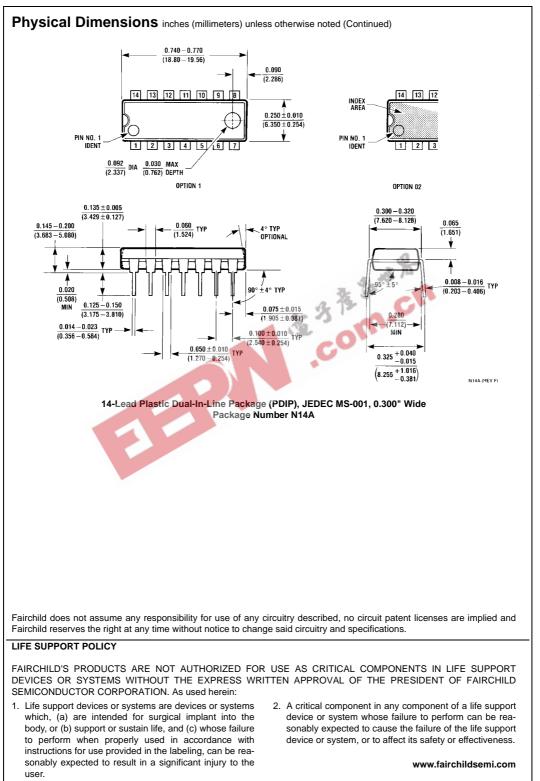

Note 5: These devices should not be connected to circuits with the power "ON".


Note 6: In all cases, there is approximately 5 pF of probe and jig capacitance on the output; however, this capacitance is included in C_L wherever it is specified.


Note 7: V_{IS} is the voltage at the in/out pin and V_{OS} is the voltage at the out/in pin. V_C is the voltage at the control input.

CD4016BC





Special Considerations

The CD4016B is composed of 4, two-transistor analog switches. These switches do not have any linearization or compensation circuitry for "R_{ON}" as do the CD4066B's. Because of this, the special operating considerations for the CD4066B do not apply to the CD4016B, but at low supply voltages, \leq 5V, the CD4016B's On Resistance becomes

non-linear. It is recommended that at 5V, voltages on the in/out pins be maintained within about 1V of either V_{DD} or V_{SS} ; and that at 3V the voltages on the in/out pins should be at V_{DD} or V_{SS} for reliable operation.

CD4016BC Quad Bilateral Switch

9