

V•I Chip™ VICBrick

Features

- Up to 80 A continuous, 100 A surge
- 93% efficiency @ 5 Vdc
- 100°C operating case temperature
- 180 W/in³ power density 120 A/in³
- 36 75 Vdc input range
- 100 V input surge for 100 ms
- Low noise ZCS/ZVS architecture
- Fast dynamic response
- Parallelable, with fault tolerance
- 2,250 Vdc basic insulation

Product Overview

VICBrick high-density converters (up to 120 A/in³) are enabled by Vicor's V•I Chip technology. Each VICBrick consists of two V•I Chips: a 36 – 75 Vdc input Pre-Regulator Module (PRM) that is paired with an appropriate Voltage Transformation Module (VTM) chosen to provide the desired output voltage. While the ultra-low profile package conforms to industry-standard quarter-brick footprint (1.45" x 2.28"), it stands only 0.27" high and achieves 80 A of output current.

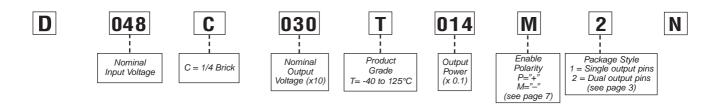
Standard outputs include 1.0, 1.2, 1.5 V and 1.8 V at 80 A, 2.5 V at 60 A, 3.0 and 3.3 V at 45 A, and 5 V at 30 A. Output voltages can be easily trimmed up or down over a wide range. Dual output pins are used for output currents over 50 A.

Utilizing breakthrough Sine Amplitude Converter (SAC) technology, VICBricks offer the highest efficiency, lowest noise, fastest transient response and highest power density. And because of the V•I Chips highly integrated functionality, VICBricks have only a fraction of the parts of a typical DC-DC converter.

DC-DC Converters Quarter Brick, 48 Vin Family

1.0 to 5.0 Vdc Output

Absolute Maximum Ratings


Parameter	Rating	Unit	Notes
+In to -In voltage			
Continuous	-1.0 to +75.0	Vdc	
Surge	100	Vdc	<100ms
On/Off to -In voltage	-0.6 to +7.0	Vdc	
Isolation voltage			Basic insulation
Input to output	2,250	Vdc	
Operating case temperature	-40 to +100	°C	Output side of VTM
Pin soldering temperature			
Wave	500 (260)	°F (°C)	<5 sec
Hand	750 (390)	°F (°C)	<7 sec

Thermal Resistance and Capacity

Parameter	Тур	Unit
VICBrick to ambient; 0 LFM	8.0	°C/W
VICBrick to ambient; 200 LFM	6.0	°C/W
Thermal capacity	22.8	Ws/°C

■ PART NUMBERING

■ PRODUCT MATRIX

Model Number	Input Voltage (Vdc)	Output Voltage (Vdc)	Max Continuous Output Current (Amps)	Typical Full Load Efficiency	Output Voltage Trim Range (Vdc)	Fuse Value
D048C010T010M2N	36 – 75	1.0	80*	83	0.90 - 1.10	5.0 A
D048C012T012M2N	36 – 75	1.2	80*	84	1.08 – 1.32	6.3 A
D048C015T012M2N	36 – 75	1.5	80	87	1.35 – 1.65	6.3 A
D048C018T014M2N	36 – 75	1.8	80	88	1.62 – 1.98	6.3 A
D048C025T015M2N	36 – 75	2.5	60	89	2.25 – 2.75	7.0 A
D048C030T014M1N	36 – 75	3.0	45	90	2.70 - 3.30	8.0 A
D048C033T015M1N	36 – 75	3.3	45	91	2.97 - 3.63	7.0 A
D048C050T015M1N	36 – 75	5.0	30	93	4.50 - 5.50	7.0 A

^{* 100} A for 100 ms

■ INPUT FUSING

VICBricks are not internally fused in order to provide flexibility in power system configuration. Input line fusing of VICBricks must always be incorporated within the power system. The input line fuse should be placed in series with +IN. Vicor recommends using the Littlefuse Nano 451/453 series for fusing VICBricks. Please refer to the chart above for appropriate fuse values.

■ MECHANICAL DRAWINGS

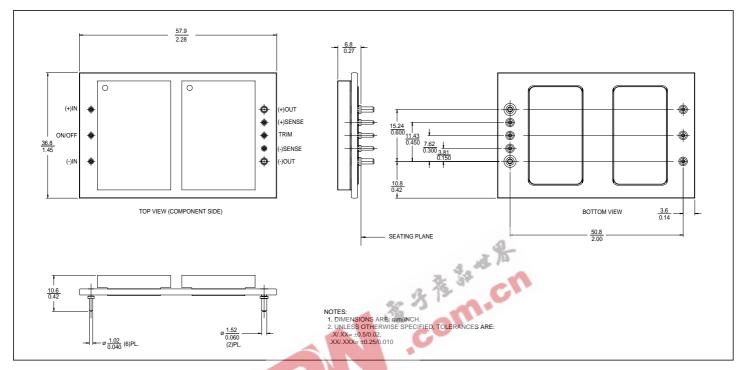


Figure 1— Mechanical outline and PCB footprint information; single output pin version (package style 1)

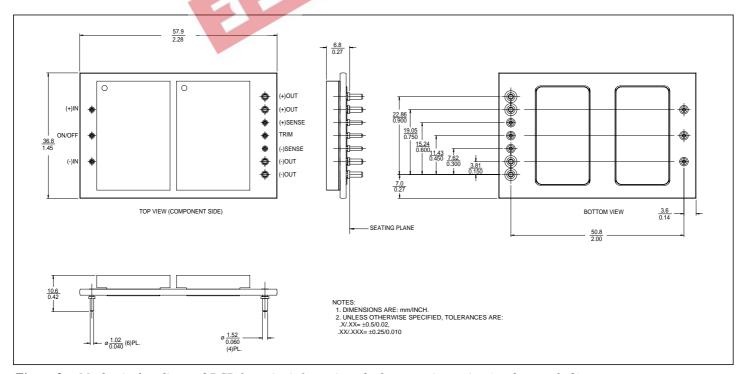


Figure 2— Mechanical outline and PCB footprint information; dual output pin version (package style 2)

Specifications, continued

Electrical characteristics apply over the full operating range of input voltage, output load (resistive) and case temperature, unless otherwise specified.

■ INPUT SPECIFICATIONS

Parameter	Min	Тур	Max	Unit	Notes
Operating input voltage	36	48	75	Vdc	
Input surge withstand			100	Vdc	<100 ms
Undervoltage					
Turn-on		35	36	Vdc	
Turn-off	32.6	33.8		Vdc	
Overvoltage					
Turn-off	76.0			Vdc	
Turn-on			75.0	Vdc	
Input reflected ripple current		3		% lin	mA p-p (see Fig.3 for test circuit)
Input dV/dt			10	V/µs	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Turn-on time				a.	2
Power up		150		ms	100
ON/OFF enable		6		ms	
No load power dissipation		6.0		W	
Recommended external input capacitance	10	50	1	μF	200 nH maximum source inductance

■ OUTPUT SPECIFICATIONS

_					
Parameter	Min	Тур	Max	Unit	Notes
Output voltage accuracy		±1		%	48 V input; no load; 25°C
Current limit		125		%	
Average short circuit current		200		mA	
Efficiency	Module	dependent, se	e charts for in	dividual models	
Output OVP setpoint		120		%	
Line regulation		0.1		%	
Load regulation		0.1		%	
Temperature regulation		±0.05		% / °C	
Ripple and noise, p-p	Module	dependent, se	e charts for in	dividual models	
Transient response					No load - full load step change, see note 1 below
Voltage deviation		2		%	_
Recovery time		75		μs	

Note 1: For important information relative to applications where the unit is subjected to continuous dynamic loading, contact Vicor Applications Engineering at 800-927-9474.

Specifications, continued

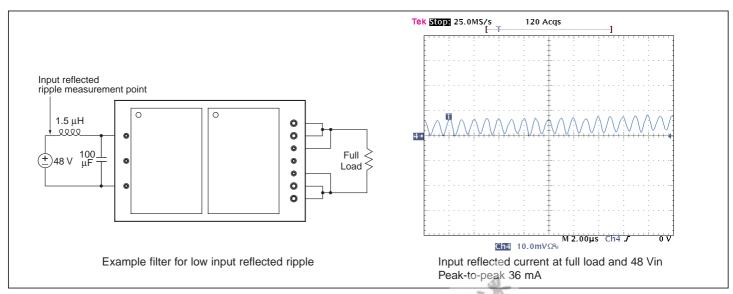


Figure 3—Typical input reflected ripple, and example input filter design

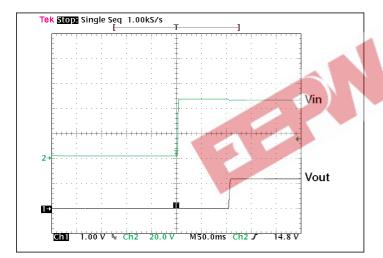


Figure 4—Output turn-on waveform with input turn-on at full load and 48 Vin

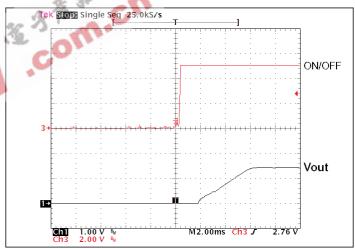


Figure 5— Output voltage turn-on waveform with ON/OFF enable at full load and 48 Vin.

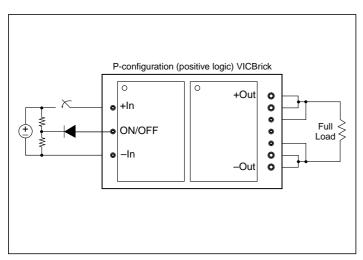


Figure 6—Test circuit for measuring turn-on times

Specifications, continued

■ SAFETY SPECIFICATIONS

Parameter	Min	Тур	Max	Unit	Notes
Isolation voltage					Complies with basic insulation requirements
Input to output	2,250			Vdc	
Isolation resistance	10			$M\Omega$	Input to output
Agency approvals (pending)		cTÜVus			UL/CSA 60950, EN 60950
		CE Mark			Low voltage directive

■ THERMAL SPECIFICATIONS

Parameter	Min	Тур	Max	Unit	Notes
Operating case temperature	-40		100	°C	Measured at output side of VTM
Storage temperature	-40		+150	°C	4
Temperature limiting	125	130	135	°C	Junction temperature, PRM or VTM
Thermal capacity		22.8		Ws/°C	0c 30 - 1
Pin soldering temperature				· · · · · · · · · · · · · · · · · · ·	13
Wave			500 (260)	°F (°C)	<5 sec
Hand			750 (390)	°F (°C)	<7 sec

■ GENERAL SPECIFICATIONS

Parameter	Min Typ	Max Unit	Notes	
MTBF				
MIL-HDBK-217F	1,500	khrs	25°C, GB	
Weight	3.7 (104)	oz (g)		
Dimensions	2.28 x 1.45 x 0.27	in	LxWxH	
	57,9 x 36,8 x 6,8	mm	LxWxH	

■ CONTROL SPECIFICATIONS – ON/OFF PIN

Parameter	Min	Тур	Max	Unit	Notes	
Disable voltage (P version)	- 0.6		1.7	Vdc	Referenced to -in	
Enable voltage (P version)	2.8		6.2	Vdc	Referenced to -in	
Enable voltage (M version)	- 0.6		0.7	Vdc	Referenced to -in	
Disable voltage (M version)	1.8		6.2	Vdc	Referenced to -in	

Pin/Control Functions

+IN / -IN — DC Voltage Input Pins

The VICBrick DC-DC Converter input voltage range should not be exceeded. The VICBrick's internal under/over voltage lockout-function prevents operation outside of the normal input range. The VICBrick turns ON within an input voltage window bounded by the "Input under-voltage turn-on" and "Input over-voltage turn-off" levels, as specified. The module may be protected against accidental application of a reverse input voltage by the addition of a rectifier in series with the positive input, or a reverse rectifier in shunt with the positive input located on the load side of the input fuse.

Input impedance

Vicor recommends a minimum of 10 μF bypass capacitance be used on-board across the +IN and –IN pins. The type of capacitor used should have a low Q with some inherent ESR such as an electrolytic capacitor. If ceramic capacitance is required for space or MTBF purposes, it should be damped with approximately $0.3~\Omega$ series resistance.

The DC resistance of the source should be kept as low as possible.

ON/OFF PIN

The ON/OFF pin provides the following Enable/Disable functionality:

Standard "M" configuration — If the ON/OFF pin is left floating, the module output is disabled. Once this port is pulled lower than 0.7 Vdc with respect to —IN, the output is enabled. This action can be realized by employing a relay, opto-coupler or open collector transistor. This pin should not be toggled at a rate higher than 1 Hz.

Optional "P" configuration — This is the reverse function from above: when the ON/OFF pin is left floating, the module output is enabled. Once this port is pulled lower than 1.7 Vdc with respect to –IN, the output is disabled.

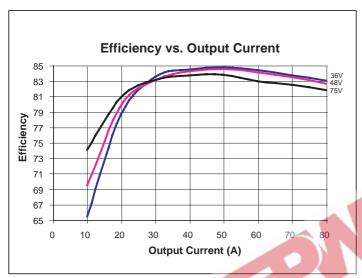
If not using the ON/OFF pin function, perform one of the following to turn the converter on: For M configuration, short ON/OFF pin to –IN. For P configuration, leave ON/OFF pin open.

+OUT / -OUT — DC Voltage Output Pins

The 0.060" diameter + and – output pins are rated for a maximum current of 50 A. Two sets of pins are provided for all units with a current rating over 50 A. These pins must be connected in parallel with minimal interconnect resistance.

Output impedance

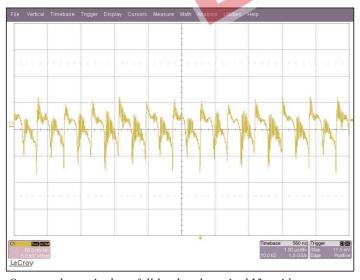
The very low output impedance of the VICBrick reduces or eliminates the need for limited life aluminum electrolytic or tantalum capacitors at the input of the non-isolated point-of-load converters.

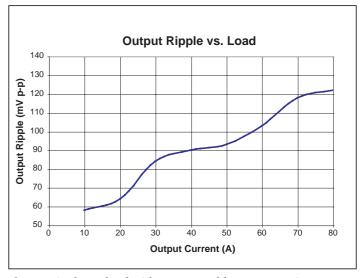

+SENSE / -SENSE — Remote Sense Pins

Remote sense minimizes the effects of distribution losses by regulating the voltage at the remote sense connections.

■ D048C010T010M2N Specifications

Parameter	Min	Тур	Max	Unit	Note
Setpoint voltage	0.990	1.000	1.010	V	
Output current – continuous	0		80	Α	
– surge			100	Α	100 ms
Input current			4.0	Α	
No load dissipation			7.0	W	
Current limit	110	120	130	Α	

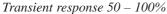


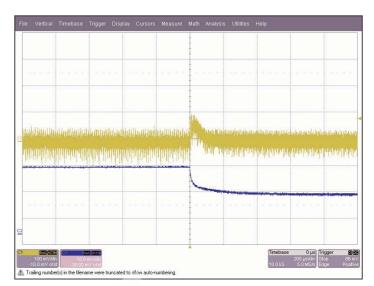

Power Dissipation vs. Output Current

30
25
20
20
10
20
10
20
30
40
50
60
70
80
Output Current (A)

Efficiency vs. load

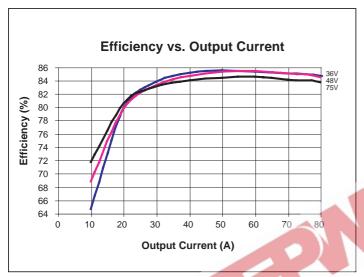
Power dissipation vs. load

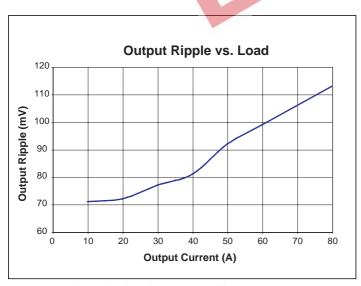



Output voltage ripple at full load and nominal Vin with no external bypass capacitor. Peak-to-peak 82 mV

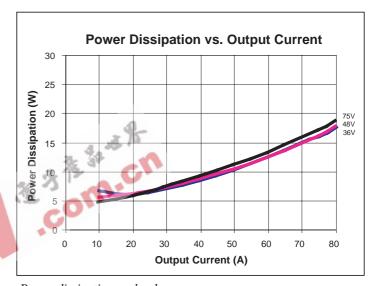
Output ripple vs. load with no external bypass capacitance

■ D048C010T010M2N Specifications (continued)

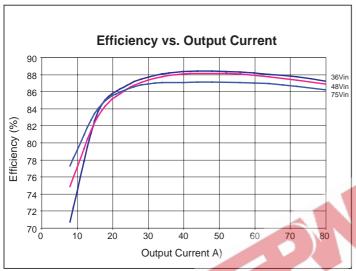


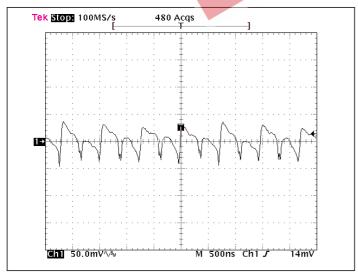


■ D048C012T012M2N Specifications


Parameter	Min	Тур	Max	Unit	Note
Setpoint voltage	1.188	1.200	1.212	V	
Output current – continuous	0		80	Α	
– surge	0		100	Α	100 ms
Input current			4.7	Α	
No load dissipation			7.0	W	
Current limit	110	120	130	Α	

Efficiency vs. load

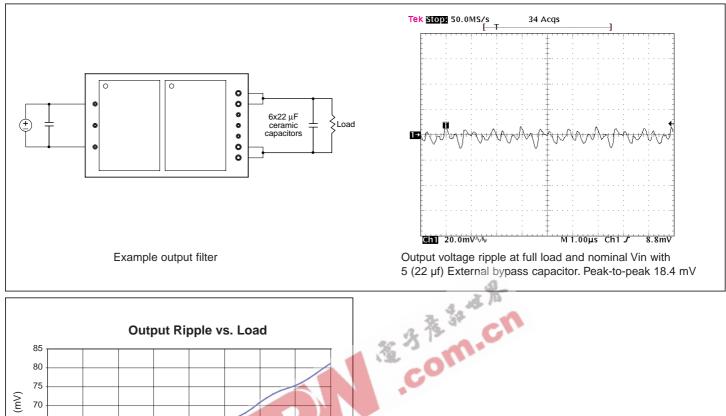

Output ripple vs. load with no external bypass capacitance

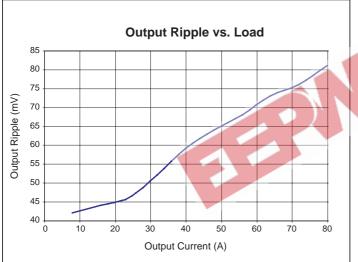

Power dissipation vs. load

■ D048C015T012M2N Specifications


Parameter	Min	Тур	Max	Unit	Note
Setpoint voltage	1.485	1.500	1.515	V	
Output current	0		80	Α	Continuous
Input current			4.7	Α	
No load dissipation			7.0	W	
Current limit	88	96	104	Α	

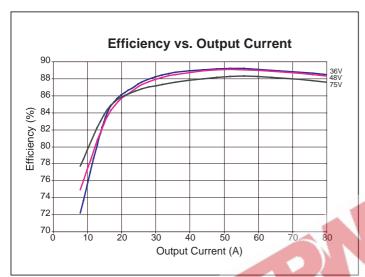
Efficiency vs. load

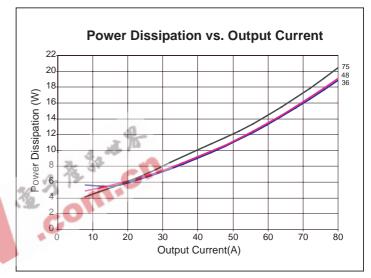



Output voltage ripple at full load and nominal Vin with no external bypass capacitor. Peak-to-peak 82 mV

Power dissipation vs. load

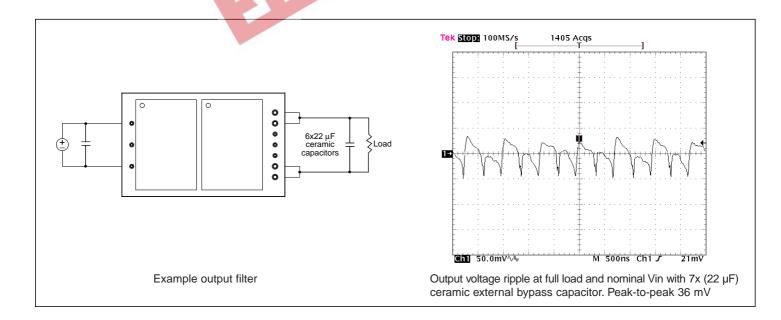
■ D048C015T012M2N Specifications (continued)





Output ripple vs. load with no external bypass capacitance

■ D048C018T014M2N Specifications


Parameter	Min	Тур	Max	Unit	Note	
Setpoint voltage	1.782	1.800	1.818	V		
Output current	0		80	Α	Continuous	
Input current			5.6	Α		
No load dissipation			7.0	W		
Current limit	88	96	104	А		

Efficiency vs. load

Power dissipation vs. load

Warranty

Vicor products are guaranteed for two years from date of shipment against defects in material or workmanship when in normal use and service. This warranty does not extend to products subjected to misuse, accident, or improper application or maintenance. Vicor shall not be liable for collateral or consequential damage. This warranty is extended to the original purchaser only.

EXCEPT FOR THE FOREGOING EXPRESS WARRANTY, VICOR MAKES NO WARRANTY, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Vicor will repair or replace defective products in accordance with its own best judgement. For service under this warranty, the buyer must contact Vicor to obtain a Return Material Authorization (RMA) number and shipping instructions. Products returned without prior authorization will be returned to the buyer. The buyer will pay all charges incurred in returning the product to the factory. Vicor will pay all reshipment charges if the product was defective within the terms of this warranty.

Information published by Vicor has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Vicor reserves the right to make changes to any products without further notice to improve reliability, function, or design. Vicor does not assume any liability arising out of the application or use of any product or circuit; neither does it convey any license under its patent rights nor the rights of others. Vicor general policy does not recommend the use of its components in life support applications wherein a failure or malfunction may directly threaten life or injury. Per Vicor Terms and Conditions of Sale, the user of Vicor components in life support applications assumes all risks of such use and indemnifies Vicor against all damages.

Vicor's comprehensive line of power solutions includes high density AC-DC and DC-DC modules and accessory components, fully configurable AC-DC and DC-DC power supplies, and complete custom power systems.

Information furnished by Vicor is believed to be accurate and reliable. However, no responsibility is assumed by Vicor for its use. Vicor components are not designed to be used in applications, such as life support systems, wherein a failure or malfunction could result in injury or death. All sales are subject to Vicor's Terms and Conditions of Sale, which are available upon request.

Specifications are subject to change without notice.

Intellectual Property Notice

Vicor and its subsidiaries own Intellectual Property (issued U.S. and Foreign Patents and pending patent applications) relating to the product described in this data sheet including;

- The electrical and thermal utility of the V•I Chip package
- The design of the V•I Chip package
- The Power Conversion Topology utilized in the V-I Chip package
- The Control Architecture utilized in the V•I Chip package
- The Factorized Power Architecture.

Purchase of this product conveys a license to use it. However, no responsibility is assumed by Vicor for any infringement of patents or other rights of third parties which may result from its use. Except for its use, no license is granted by implication or otherwise under any patent or patent rights of Vicor or any of its subsidiaries.

Anybody wishing to use Vicor proprietary technologies must first obtain a license. Potential users without a license are encouraged to first contact Vicor's Intellectual Property Department.

Vicor Corporation

25 Frontage Road • Andover, MA, USA 01810 Tel: 800-735-6200, Fax: 978-475-6715

email

Vicor Express: vicorexp@vicr.com, Technical Support: apps@vicr.com

Vicor Corporation Tel: 800-735-6200 vicorpower.com