
Advance Data Sheet March 1999

microelectronics group

D171-Type *FastLight*[™] PIN Photodetectors

The D171-Type PIN Photodetectors feature a rear-illuminated planar diode structure with a low-capacitance 4-mil active area for maximum responsivity and speed.

Features

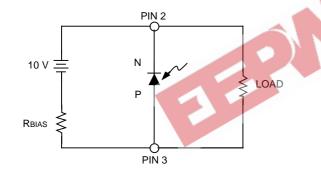
- Low-profil e, 4-lead mini-DIL pa ckage
 Suitable for SONET applications
- High per formance
 High speed (<0.5 ns typical rise and fall time)
 High responsivity (0.85 A/W typical)
 Low dark current
- Planar st ructure for high reliability
- Wavelength : 1.1μm—1.6 μm
- **50 μm** core multimode fiber
- Wide operating temperature range : -40 °C to +85 °C
- Wide bandwidth
- Qualification program : Bellcor e TA-NWT-983

Applications

- Long-reach SONET OC-3/OC-12 systems and SDH STM-1/STM-4 systems
- Secure digital data systems

Benefits

- Compact si ze
- Easily board mounted


D171-Type FastLight PIN Photodetectors

Description

The D171-Type Photodetector consists of a PIN coupled to a multimode fiber pigail. The device is available in a 4-pin mini-DIL configuration (see Figure 3 and/or Table 1) and is ideal for long-reach (SONET) and other high-speed digital applications.

The D171-Type PIN Photodetector is a rear-illuminated planar diode structure with a low-capacitance active area for maximum responsivity and speed.

This device incorporates the new Laser 2000 manufacturing process from the Optoelectronics Products unit of Lucent Technologies Microelectronics Group. Laser 2000 is a low-cost platform that targets high-volume manufacturing and tight product distributions on all optical subassemblies. This platform incorporates an advanced optical design that is produced on Opto's highly automated production lines. The Laser 2000 platform is qualified for central office and uncontrolled environments, and can be used for applications requiring high perfomance and low cost.

Figure 1. Typical Bias Connection

 $RN \neq CN$ $RN \neq CO$ $P \qquad CO$ $RP \neq LP$ CP $RP \neq LP$

Advance Data Sheet

PIN 3

1-697

March 1999

This equivalent circuit is intended for modeling the package capacitance. Minimum capacitance is achieved by connecting the N-side to ground, applying a negative voltage to the P-side, and allowing the package to float (i.e., not connected to ground).

Typical values are as follows: Co = 0.3 pF to 0.5 pF. LN, LP = 3.0 nH. RN, RP = 5 Ω . CN = 0.4 pF.

Notes:

Applications

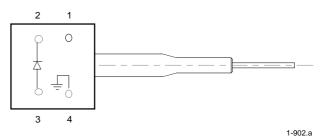


Figure 3. D171-Type PIN Photodetector Schematic (Top View)

Table 1. Pin Descriptions

Pin Number	Description
1	NC
2	Photodiode Cathode
3	Photodiode Anode
4	Case Ground

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Parameter	Symbol	Min	Max	Unit
Operating Temperature Range	TA	-40	85	۵°
Storage Temperature Range	Tstg	-40	90	۵°C
Forward Voltage	VF	—	0	V
Reverse Voltage*	VR	—	30	V
Photocurrent	—	—	4	mA
Humidity	_	_	95	%

* The recommended reverse bias voltage is 5 V to 15 V.

Handling Precautions

Electrostatic Discharge

a reen CAUTION: This device is susceptible to damage as a result of electrostatic discharge. Take proper precautions during both handling and testing. Follow guidelines such as JEDEC Publication No. 108-A (Dec. 1988).

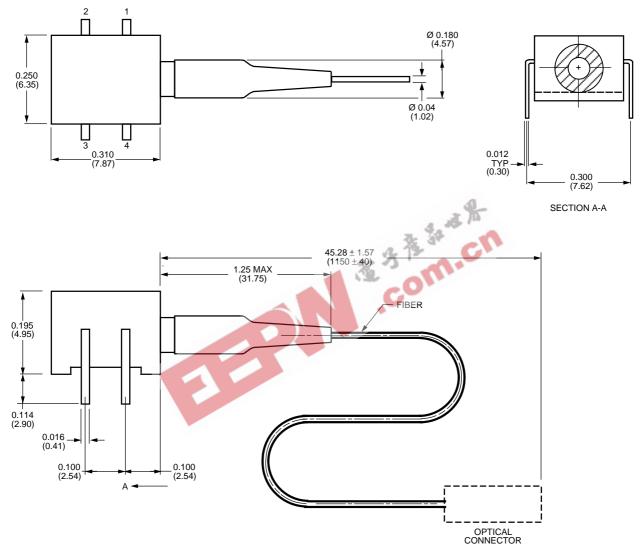
Although protection circuitry is designed into the device, take proper precautions to avoid exposure to ESD.

Electrical Characteristics

Tc = 25 °C. Determined with a 50 Ω load.

Parameter	Symbol	Min	Тур	Max	Unit
Capacitance (f < 900 MHz)*	—		0.65	0.70	pF
Rise/Fall Time	tr/tr	—	<0.5	—	ns
Dark Current	lo		1	5	nA
Reverse Voltage	Vr	2	5	30	V

* The minimum capacitance configuration occurs when the N-side of the PIN is grounded and a negative voltage is applied to the P-side, with the package floating, not grounded (value reference only; not tested in manufacture).


Optical Characteristics

TC = 25 °C.

Parameter	Symbol	Min	Тур	Мах	Unit
Responsivity	R	0.75	0.85		A/W
Wavelength Range	—	1.1	—	1.6	μm

Outline Diagram

Dimensions are in inches and (millimeters).

1-933

Qualification Information

The D171-Type PIN Photodetector has completed the following qualification tests and meets the intent of Bellcore TR-NWT-000468 for interoffice environments and TA-NWT-000983 for outside plant environments.

Test	Conditions	Sample Size	Reference
Mechanical Shock	500 G	11	MIL-STD-883 Method 2002
Vibration	20 g, 20 Hz—2000 Hz	11	MIL-STD-883 Method 2007
Solderability	_	11	MIL-STD-883 Method 2007
Thermal Shock	Delta T = 100 °C	11	MIL-STD-883 Method 2003
Fiber Pull	1 kg; 3 times	11	Bellcore 983
Accelerated (biased) Aging	85 °C, 5000 hrs.	25	Bellcore 983 Section 5.18
High-temperature Storage	85 °C, 2000 hrs.	11	Bellcore 983
Temperature Cycling	500 cycles	11	Bellcore 983 Section 5.20
Cyclic Moisture Resistance	10 cycles	11	Bellcore 983 Section 5.23
Damp Heat	40 °C, 95% RH, 1344 hrs.	11	MIL-STD-202 Method 103
Internal Moisture	<5000 ppm water vapor	11	MIL-STD-883 Method 1018
Flammability	_	-	TR357 Sec. 4.4.2.5
ESD Threshold	_	6	Bellcore 983 Section 5.22

Ordering Information

Device Code	Description	Comcode
D171C004BAA	PIN 4-Lead Package, 50 µm, MM Fiber, SC Connector	108156654
D171C004BAF	PIN 4-Lead Package, 50 µm, MM Fiber, FC Connector	108156662
D171C004CAN	PIN 4-Lead Package, SM Fiber, No Connector	108271699

For additional infor	mation, contact your Microelectronics Group Account Manager or the following:
INTERNET:	http://www.lucent.com/micro, or for Optoelectronics information, http://www.lucent.com/micro/opto
E-MAIL:	docmaster@micro.lucent.com
N. AMERICA:	Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103
	1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)
ASIA PACIFIC:	Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256
	Tel. (65) 778 8833, FAX (65) 777 7495
CHINA:	Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road,
	Shanghai 200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652
JAPAN:	Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan
	Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700
EUROPE:	Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 1189 324 299, FAX (44) 1189 328 148
	Technical Inquiries: OPTOELECTRONICS MARKETING: (44) 1344 865 900 (Ascot UK)

Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information. FastLight is a trademark of Lucent Technologies Inc.

Copyright © 1999 Lucent Technologies Inc. All Rights Reserved

March 1999 DS99-166LWP (Replaces DS99-091LWP) microelectronics group

Lucent Technologies Bell Labs Innovations