

August 1986 Revised March 2000

DM74LS90 Decade and Binary Counters

General Description

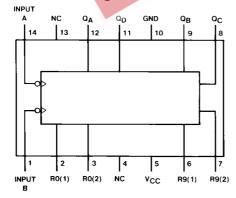
Each of these monolithic counters contains four masterslave flip-flops and additional gating to provide a divide-bytwo counter and a three-stage binary counter for which the count cycle length is divide-by-five for the DM74LS90.

All of these counters have a gated zero reset and the DM74LS90 also has gated set-to-nine inputs for use in BCD nine's complement applications.

To use their maximum count length (decade or four bit binary), the B input is connected to the \mathbf{Q}_A output. The input count pulses are applied to input A and the outputs are as described in the appropriate truth table. A symmetrical divide-by-ten count can be obtained from the DM74LS90 counters by connecting the \mathbf{Q}_D output to the A input and applying the input count to the B input which gives a divide-by-ten square wave at output \mathbf{Q}_A .

Features

- Typical power dissipation 45 mW
- Count frequency 42 MHz



Ordering Code:

Order Number	Package Number	Package Description
DM74LS90M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
DM74LS90N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Reset/Count Truth Table

	Reset Inputs				Out	put		
R0(1)	R0(2)	R9(1)	R9(2)	Q_D	Q_{C}	QB	Q_A	
Н	Н	L	Х	L	L	L	Г	
Н	Н	Χ	L	L	L	L	L	
Х	Χ	Н	Н	Н	L	L	Н	
Х	L	Χ	L	COUNT				
L	Χ	L	Χ	COUNT				
L	Χ	Χ	L	COUNT				
X	L	L	Χ	COUNT				

Function Tables

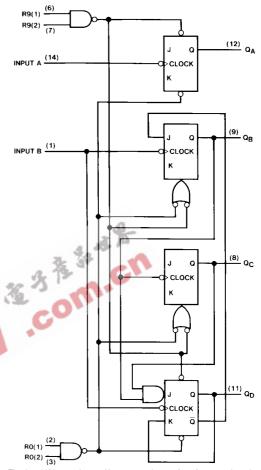
BCD Count Sequence (Note 1)

Count	Output					
	Q _D	Q _C	Q _B	Q _A		
0	L	L	L	L		
1	L	L	L	Н		
2	L	L	Н	L		
3	L	L	Н	Н		
4	L	Н	L	L		
5	L	Н	L	Н		
6	L	Н	Н	L		
7	L	Н	Н	Н		
8	Н	L	L	L		
9	Н	L	L	Н		

Bi-Quinary (5-2) (Note 2)

Count	Output					
	Q_A	Q_D	Q _C	Q_B		
0	L	L	L	L		
1	L	L	L	H		
2	L	L	Н	L		
3	L	L	Н	H		
4	L	Н	L	L		
5	Н	L	1	L T		
6	Н	L	L	H		
7	Н		H	L		
8	H		H	Н		
9	Н	Н	L	L		

H = HIGH Level L = LOW Level


X = Don't Care

Note 1: Output Q_A is connected to input B for BCD count.

Note 2: Output \mathbf{Q}_{D} is connected to input A for bi-quinary count.

Note 3: Output Q_A is connected to input B.

Logic Diagram

The J and K inputs shown without connection are for reference only and are functionally at a high level.

Absolute Maximum Ratings(Note 4)

Supply Voltage Input Voltage (Reset) Input Voltage (A or B) Operating Free Air Temperature Range

-65°C to +150°C for actual device operation.

Storage Temperature Range

Note 4: The "Absolute Maximum Ratings" are those values beyond which Note 4: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings.

O°C to +70°C

The "Recommended Operating Conditions" table will define the conditions

Recommended Operating Conditions

Symbol	Parameter		Min	Nom	Max	Units
V _{CC}	Supply Voltage		4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage		2			V
V _{IL}	LOW Level Input Voltage				0.8	V
I _{OH}	HIGH Level Output Current				-0.4	mA
I _{OL}	LOW Level Output Current				8	mA
f _{CLK}	Clock Frequency (Note 5)	A to Q _A	0	4	32	MHz
		B to Q _B	0	. 4.7	16	
f _{CLK}	Clock Frequency (Note 6)	A to Q _A	0 3%	7.3	20	MHz
		B to Q _B	0	F	10	
t _W	Pulse Width (Note 5)	A	15	-		
		В	30	110		ns
		Reset	15			
t _W	Pulse Width (Note 6)	A	25			
		В	50			ns
		Reset	25			
t _{REL}	Reset Release Time (Note 5)		25			ns
t _{REL}	Reset Release Time (Note 6)		35			ns
T _A	Free Air Operating Temperature		0		70	°C

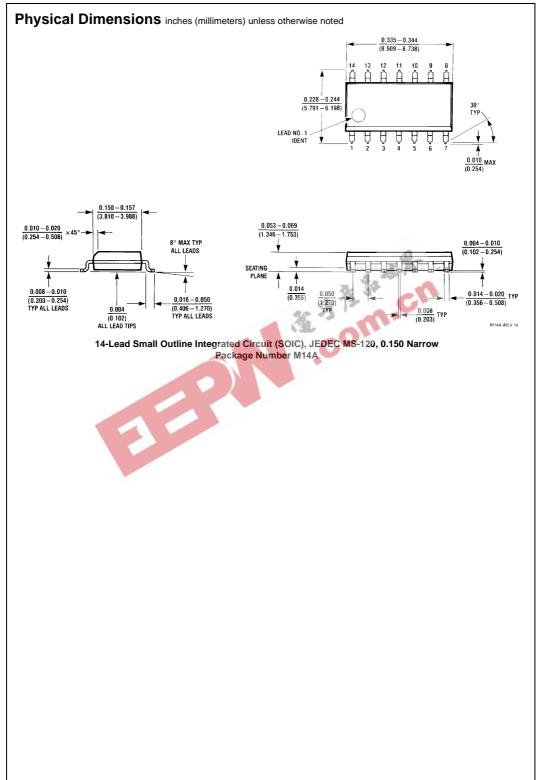
Note 5: $C_L = 15$ pF, $R_L = 2$ k Ω , $T_A = 25$ °C and $V_{CC} = 5$ V. Note 6: $C_L = 50$ pF, $R_L = 2$ $k\Omega$, $T_A = 25$ °C and $V_{CC} = 5V$.

Electrical Characteristics

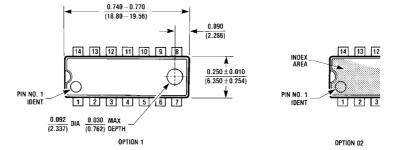
over recommended operating free air temperature range (unless otherwise noted)

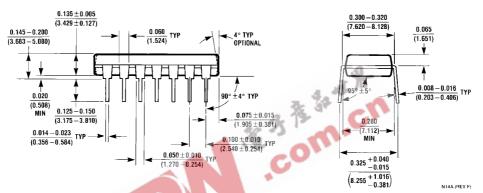
Symbol	Parameter	Conditions	5	Min	Typ (Note 7)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$				-1.5	V
V _{OH}	HIGH Level	V _{CC} = Min, I _{OH} = Max		2.7	3.4		V
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$		2.7	5.4		•
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Max	(Note 8)				
	Output Voltage	$V_{IL} = Max, V_{IH} = Min$	(Note o)		0.35	0.5	V
		I _{OL} = 4 mA, V _{CC} = Min			0.25	0.4	
I _I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$	Reset			0.1	
	Input Voltage	V _{CC} = Max	A			0.2	mA
		$V_I = 5.5V$	В			0.4	
I _{IH}	HIGH Level	$V_{CC} = Max, V_I = 2.7V$	Reset			20	
	Input Current		Α			40	μΑ
			В			80	
I _{IL}	LOW Level	$V_{CC} = Max, V_I = 0.4V$	Reset			-0.4	
	Input Current		Α			-2.4	mA
			В			-3.2	
Ios	Short Circuit Output Current	V _{CC} = Max (Note 9)	•	-20		-100	mA
Icc	Supply Current	V _{CC} = Max (Note 7)			9	15	mA

Note 7: All typicals are at $V_{CC} = 5V$, $T_A = 25$ °C.


Electrical Characteristics (Continued)

Note 8: Q_A outputs are tested at I_{OL} = Max plus the limit value of I_{IL} for the B input. This permits driving the B input while maintaining full fan-out capability. Note 9: Not more than one output should be shorted at a time, and the duration should not exceed one second.


Note 10: I_{CC} is measured with all outputs open, both RO inputs grounded following momentary connection to 4.5V and all other inputs grounded.


Switching Characteristics at V_{CC} = 5V and T_A = 25°C

		From (Input)	$R_L = 2 k\Omega$				
Symbol	Parameter	To (Output)	C _L = 15 pF		C _L = 50 pF		Units
			Min	Max	Min	Max	
f _{MAX}	Maximum Clock	A to Q _A	32		20		MHz
	Frequency	B to Q _B	16		10		IVII IZ
t _{PLH}	Propagation Delay Time	A to Q _A		16		20	ns
	LOW-to-HIGH Level Output	,,					
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	A to Q _A		18		24	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	A to Q _D		48		52	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	A to Q _D		50	5	60	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	B to Q _B	人為	16	In.	23	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	B to Q _B	2	21		30	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	B to Q _C	C	32		37	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	B to Q _C		35		44	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	B to Q _D		32		36	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	B to Q _D		35		44	ns
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	SET-9 to Q _A , Q _D		30		35	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	SET-9 to Q _B , Q _C		40		48	ns
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output	SET-0 to Any Q		40		52	ns

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com