March 2006

FDMS8690 N-Channel PowerTrench[®] MOSFET 30V, 19.8A, 9mΩ

General Description

This device has been designed specifically to improve the efficiency of DC-DC converters. Using new techniques in MOSFET construction, the various components of gate charge and capacitance have been optimized to reduce switching losses. Low gate resistance and very low Miller charge enable excellent performance with both adaptive and fixed dead time gate drive circuits. Very low r_{DS(on)} has been maintained to provide an extremely versatile device.

Applications

- High Efficiency DC-DC Converters
 - Notebook Vcore Power Supply
 - Multi purpose Point of Load

Features

- Max $r_{DS(on)}$ = 9.0m Ω at V_{GS} = 10V, I_D = 19.8A
- Max $r_{DS(on)}$ = 12.5m Ω at V_{GS} = 4.5V, I_D = 11.5A
- High performance trench technology for extremely low $r_{DS(on)}$ and gate charge

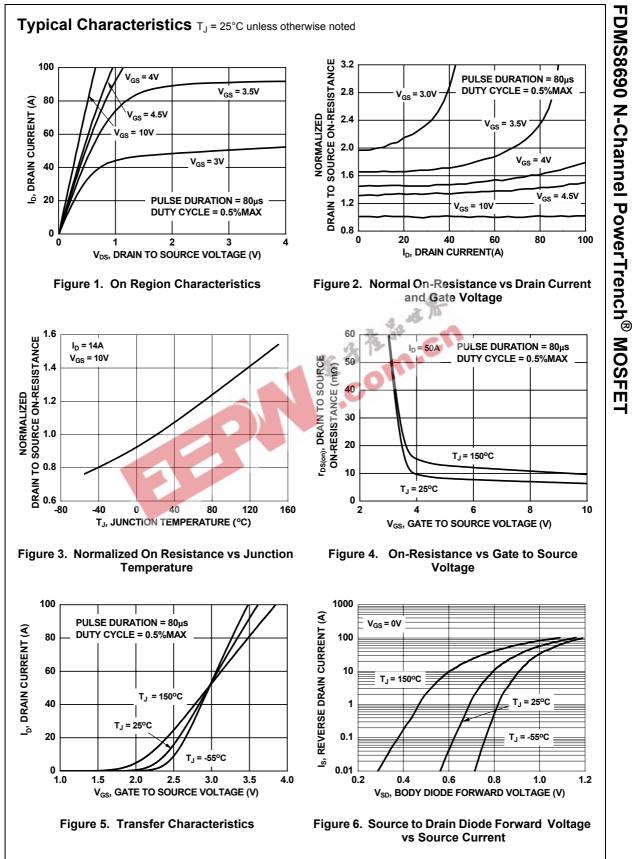
3 4

2 1

8 7 6 5

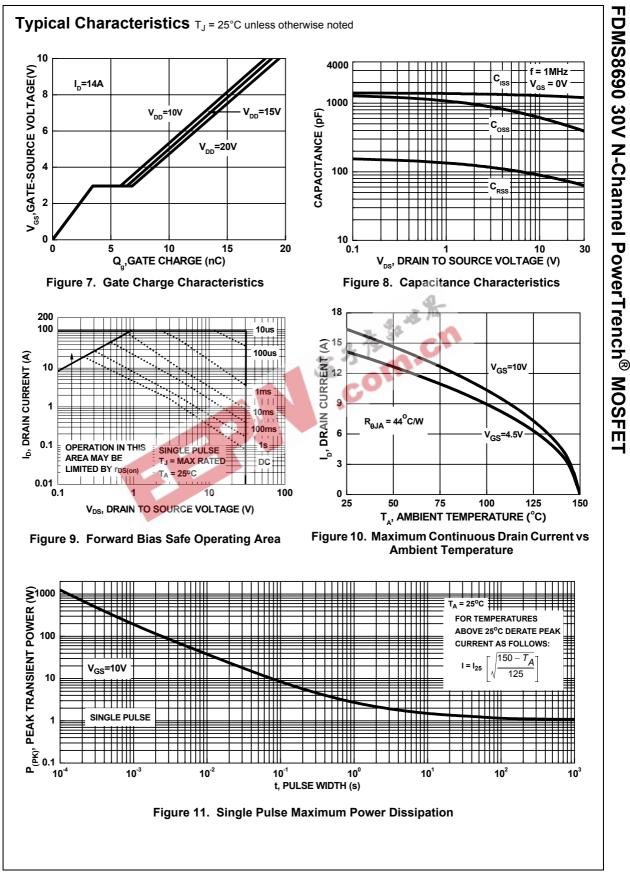
- Minimal Qgd (2.9 nC typical)
- **RoHS** Compliant

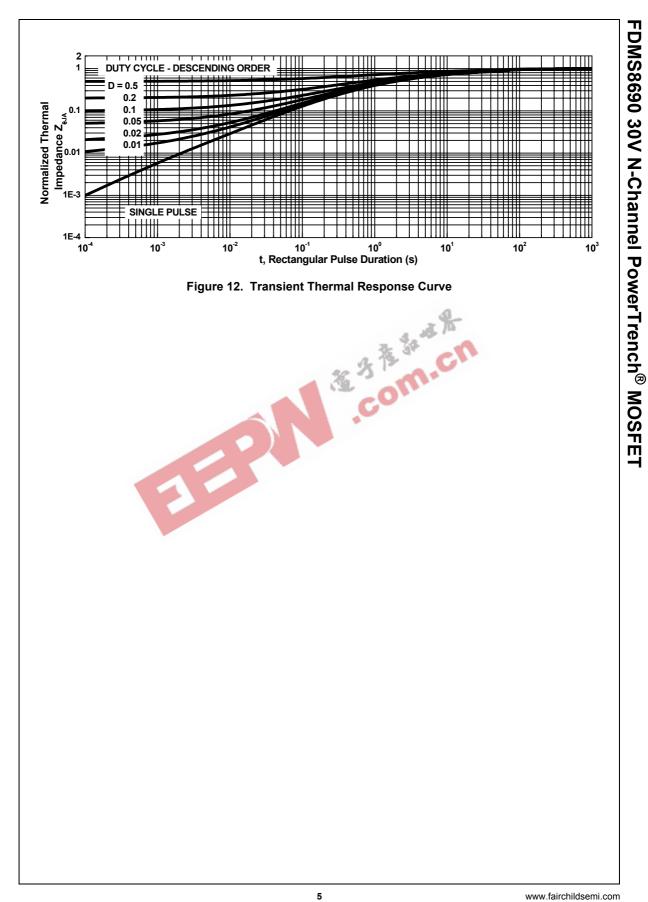
FDMS8690 N-Channel PowerTrench[®] MOSFET


		0	=25°C unless oth	erwise noted			
Symbol		Parameter			Ratings		Units
V _{DS}	Drain-Source	ce Voltage			30		V
V _{GS}	Gate-Sourc	e Voltage			±20		V
l _D	Drain Curre	nt – Continuous	(Note 1a)		19.8	А	
	– Pulsed				90		
P _D Power Diss		ipation for Single Opera	tion (No	ote 1a)	2.8		W
			(No	ote 1b)	1.1		
T _J , T _{STG}	Operating and Storage Junction Temperature Range		ange	-55 to +150		°C	
Therma	I Charac	teristics					
$R_{ ext{ hetaJA}}$	Thermal Re	hermal Resistance, Junction-to-Ambient		ote 1a)	44		°C/W
R _{0JA}	Thermal Resistance, Junction-to-Ambient		mbient (No	ote 1b)	115		
Packag	e Markin	g and Ordering	Informa	ation			
Device Marking		Device	Reel Siz	ze	Tape width	Qu	antity
FDMS8690 FDMS8690		FDMS8690	7"	12mm		3000 units	

©2006 Fairchild Semiconductor Corporation

FDMS8690 Rev B(W)


www.fairchildsemi.com


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics	1				
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 250 \mu A$	30			V
<u>ΔBVdss</u> ΔTj	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25° C		34		mV/°C
	Zero Gate Voltage Drain Current	$V_{DS} = 24 V$, $V_{GS} = 0 V$			1	μA
IGSS	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
	, ,			1		
V _{GS(th)}	Acteristics (Note 2) Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	1	1.6	3	V
$V_{GS(th)}$ $\Delta V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu\text{A}$ $I_D = 250 \ \mu\text{A}$, Referenced to 25°C	1	1.0	5	v
ΔT_J	Temperature Coefficient	-		-4.5		mV/°C
r _{DS(on)}	Static Drain–Source	$V_{GS} = 10 \text{ V}, I_D = 19.8 \text{ A}$		7.4	9	
	On-Resistance	$V_{GS} = 4.5 \text{ V}, I_D = 11.5 \text{ A}$		9.9 10.6	12.5 13.3	mΩ
		$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 19.8 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$		10.0	15.5	
Dynamic	Characteristics		2	i	i	
C _{iss}	Input Capacitance	$V_{DS} = 15 V$, $V_{GS} = 0 V$,	1.0	1260	1680	pF
C _{oss}	Output Capacitance	f = 1.0 MHz	2	535	715	pF
Crss	Reverse Transfer Capacitance	10 3		80	120	pF
R _G	Gate Resistance	f = 1.0 MHz		1.1		Ω
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 V, I_D = 1 A,$		8	16	ns
t _r	Turn–On Rise Time	$V_{GS} = 10 V$, $R_{GEN} = 6 \Omega$		1.8	10	ns
t _{d(off)}	Turn-Off Delay Time			26	42	ns
t _f	Turn–Off Fall Time			19	35	ns
Q _{g(TOT)}	Total Gate Charge at $V_{GS} = 10V$	$V_{\rm DS} = 15 \text{ V}, \qquad I_{\rm D} = 14 \text{ A}$		18.8	27	nC
Q _{g(5)}	Total Gate Charge at $V_{GS} = 5V$			10	14	nC
Q _{gs}	Gate-Source Charge			3.5		nC
Q _{gd}	Gate-Drain Charge			2.9		nC
Drain–So	ource Diode Characteristics					
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V, I_S = 2.1 A$ (Note 2)		0.7	1.2	V
t _{rr}	Diode Reverse Recovery Time	I _F = 14 A,			45	ns
Q _{rr}	Diode Reverse Recovery Charge	di/dt = 100 A/µs			33	nC
tes: 1. R _{a,J} while	 is determined with the device mounted on a 1in² p. e R_{0CA} is determined by the user's board design. a) 44°C/W when mounted on a 1 of 2 oz copper 		b)	al. R _{eJC} is gr 115 °C/W ∖ on a minim copper Ile 1 : 1 on I	when mour um pad of	nted 2 oz
Pulse Test: Pu	lse Width < 300 $\mu s,$ Duty Cycle < 2.0%					



3

EDMS8690 Rev B

www.fairchildsemi.com

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerSaver™	SuperSOT™-6
ActiveArray™	FASTr™	LittleFET™	PowerTrench [®]	SuperSOT™-8
Bottomless™	FPS™	MICROCOUPLER™	QFET [®]	SyncFET™
Build it Now™	FRFET™	MicroFET™	QS™	TCM™
CoolFET™	GlobalOptoisolator™	MicroPak™	QT Optoelectronics™	TinyLogic [®]
CROSSVOLT™	GTO™	MICROWIRE™	Quiet Series™	TINYOPTO™
DOME™	HiSeC™	MSX™	RapidConfigure™	TruTranslation™
EcoSPARK™	I ² C™	MSXPro™	RapidConnect™	UHC™
E ² CMOS™	i-Lo™	OCX™	µSerDes™	UltraFET [®]
EnSigna™	ImpliedDisconnect [™]	OCXPro™	ScalarPump™	UniFET™
FACT™	IntelliMAX™	OPTOLOGIC®	SILENT SWITCHER [®]	VCX™
FACT Quiet Series™		OPTOPLANAR™	SMART START™	Wire™
		PACMAN™	SPM™	
Across the board. Arou	und the world.™	POP™	Stealth™	
The Power Franchise [®])	Power247™	SuperFET™	
Programmable Active I	Droop™	PowerEdge™	SuperSOT™-3	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of	of Terms
---------------	----------

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. 118