

October 2003 Revised October 2004

FIN1217 • FIN1218 • FIN1215 • FIN1216

LVDS 21-Bit Serializers/De-Serializers

General Description

The FIN1217 and FIN1215 transform 21-bit wide parallel LVTTL (Low Voltage TTL) data into 3 serial LVDS (Low Voltage Differential Signaling) data streams. A phase-locked transmit clock is transmitted in parallel with the data stream over a separate LVDS link. Every cycle of transmit clock 21 bits of input LVTTL data are sampled and transmitted.

The FIN1218 and FIN1216 receive and convert the 3 serial LVDS data streams back into 21 bits of LVTTL data. Refer to Table 1 for a matrix summary of the Serializers and Deserializers available. For the FIN1217, at a transmit clock frequency of 85 MHz, 21 bits of LVTTL data are transmitted at a rate of 595 Mbps per LVDS channel.

These chipsets are an ideal solution to solve EMI and cable size problems associated with wide and high-speed TTL interfaces.

Features

- Low power consumption
- 20 MHz to 85 MHz shift clock support
- 50% duty cycle on the clock output of receiver
- ±1V common-mode range around 1.2V
- Narrow bus reduces cable size and cost
- High throughput (up to 1.785 Gbps throughput)
- Up to 595 Mbps per channel
- Internal PLL with no external component
- Compatible with TIA/EIA-644 specification
- Devices are offered in 48-lead TSSOP packages

Ordering Code:

Order Number	Package Number	Package Description
FIN1215MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
FIN1216MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
FIN1217MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
FIN1218MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

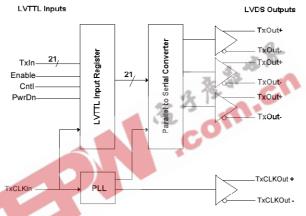
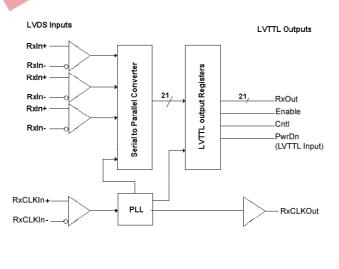

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

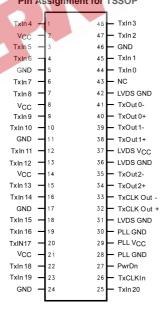
TABLE 1. Serializers/De-Serializers Chip Matrix


Part	CLK Frequency	LVTTL IN	LVDS OUT	LVDS IN	LVTTL OUT	Package
FIN1217	85	21	3			48 TSSOP
FIN1218	85			3	21	48 TSSOP
FIN1215	66	21	3			48 TSSOP
FIN1216	66			3	21	48 TSSOP

Block Diagrams

Transmitter Functional Diagram for FIN1217 and FIN1215

Receiver Functional Diagram for FIN1218 and FIN1216

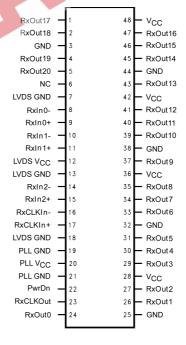

Transmitters

Pin Descriptions

Pin Names	I/O Type	Number of Pins	Description of Signals
TxIn	I	21	LVTTL Level Inputs
TxCLKIn	I	1	LVTTL Level Clock Input The rising edge is for data strobe.
TxOut+	0	3	Positive LVDS Differential Data Output
TxOut-	0	3	Negative LVDS Differential Data Output
TxCLKOut+	0	1	Positive LVDS Differential Clock Output
TxCLKOut-	0	1	Negative LVDS Differential Clock Output
PwrDn	I	1	LVTTL Level Power-Down Input Assertion (LOW) puts the outputs in high-impedance state.
PLL V _{CC}	I	1	Power Supply Pin for PLL
PLL GND	I	2	Ground Pins for PLL
LVDS V _{CC}	I	1	Power Supply Pin for LVDS Outputs
LVDS GND	I	3	Ground Pins for LVDS Outputs
V _{CC}	I	4	Power Supply Pins for LVTTL Inputs
GND	I	5	Ground pins for LVTTL Inputs
NC			No Connect

Connection Diagram

FIN1217 and FIN1215 (21:3 Transmitter) Pin Assignment for TSSOP


Receivers

Pin Descriptions

Pin Names	I/O Type	Number of Pins	Description of Signals
RxIn	I	3	Negative LVDS Differential Data Inputs
RxIn+	I	3	Positive LVDS Differential Data Inputs
RxCLKIn-	I	1	Negative LVDS Differential Clock Input
RxCLKIn+	ı	1	Positive LVDS Differential Clock Input
RxOut	0	21	LVTTL Level Data Outputs Goes HIGH for PwrDn LOW
RxCLKOut	0	1	LVTTL Clock Output
PwrDn	I	1	LVTTL Level Input Refer to Transmitter and Receiver Power-Up and Power-Down Operation Truth Table
PLL V _{CC}	I	1	Power Supply Pin for PLL
PLL GND	I	2	Ground Pins for PLL
LVDS V _{CC}	ı	1	Power Supply Pin for LVDS Inputs
LVDS GND	I	3	Ground Pins for LVDS Inputs
V _{CC}	I	4	Power Supply for LVTTL Outputs
GND	I	5	Ground Pins for LVTTL Outputs
NC			No Connect

Connection Diagram

FIN1218 and FIN1216 (3:21 Receiver) Pin Assignment for TSSOP

Truth Tables

Transmitter Truth Table

	Inputs	Outputs			
TxIn	TxCLKIn	PwrDn (Note 1)	TxOut±	TxCLKOut±	
Active	Active	Н	L/H	L/H	
Active	L/H/Z	Н	L/H	X (Note 2)	
F	Active	Н	L	L/H	
F	F	Н	L	X (Note 2)	
X	X	L	Z	Z	

- H = HIGH Logic Level L = LOW Logic Level

- X = Don't Care
 Z = High Impedance
 F = Floating

Note 1: The outputs of the transmitter or receiver will remain in a High Impedance state until V_{CC} reaches 2V.

Receiver Truth Table

2: TxCLKOut± will settle at a free running frequency when the part is powered up, PwrDn is HIGH and the TxCLKIn is a steady logic level (L/						
ceiver Truth Table						
RxIn±	RxCLKIn±	PwrDn (Note 3)	RxOut	RxCLKOut		
Active	Active	Н	L/H	L/H		
Active	F (Note 4)	Н	Р	Н		
F (Note 4)	Active	H	Н	L/H		
F (Note 4)	F (Note 4)	Н	P (Note 5)	Н		
X	X	L	L	Н		

- H = HIGH Logic Level L = LOW Logic Level P = Last Valid State

- X = Don't Care
 Z = High Impedance
 F = Failsafe Condition
- $\textbf{Note 3:} \ \text{The outputs of the transmitter or receiver will remain in a High Impedance state until V}_{CC} \ \text{reaches 2V}.$
- Note 4: Failsafe condition is defined as the input being terminated and un-driven (Z) or shorted or open.

Note 5: If RxCLKIn± is removed prior to the RxIn± data being removed, RxOut will be the last valid state. If RxIn± data is removed prior to RxCLKIn± being removed, RxOut will be HIGH.

5

Absolute Maximum Ratings(Note 6)

-0.3V to +4.6V

Continuous

260°C

>400V

Power Supply Voltage (V_{CC}) TTL/CMOS Input/Output Voltage -0.5V to +4.6V LVDS Input/Output Voltage -0.3V to +4.6V

LVDS Output Short Circuit Current (I_{OSD})

Storage Temperature Range (T_{STG}) -65°C to +150°C Maximum Junction Temperature (T_J) 150°C

Lead Temperature (T_L)

(Soldering, 4 seconds)

ESD Rating (HBM, 1.5 k Ω , 100 pF)

LVDS I/O to GND >10.0 kV All Pins (FIN1215, FIN1217 only) >6.5 kV

ESD Rating (MM, 0Ω, 200 pF)

(FIN1215, FIN1217 only)

Recommended Operating Conditions

Supply Voltage (V_{CC}) 3.0V to 3.6V Operating Temperature (T_A)(Note 6) -40°C to +85°C

Maximum Supply Noise Voltage

(V_{CCNPP}) 100 mV_{P-P} (Note 7)

Note 6: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 7: 100mV $\rm V_{\rm CC}$ noise should be tested for frequency at least up to

2 MHz. All the specification below should be met under such a noise

Transmitter DC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified. (Note 8)

Symbol	Parameter	Test Conditio	ns	Min	Тур	Max	Units
Transmitte	er LVTTL Input Characteristics	36	34	-17			•
V _{IH}	Input High Voltage	1		2.0		V _{CC}	V
V _{IL}	Input Low Voltage	76	400	GND		0.8	V
V _{IK}	Input Clamp Voltage	I _{IK} = -18 mA			-0.79	-1.5	V
I _{IN}	Input Current	$V_{IN} = 0.4V \text{ to } 4.6V$			1.8	10.0	μА
		V _{IN} = GND		-10.0	0		μΛ
Transmitte	er LVDS Output Characteristics (Note 9)						
V _{OD}	Output Differential Voltage			250		450	mV
ΔV_{OD}	V _{OD} Magnitude Change from Differential LOW-to-HIGH	R_L = 100 Ω, See Figure 1				35.0	mV
Vos	Offset Voltage			1.125	1.25	1.375	V
ΔV_{OS}	Offset Magnitude Change from Differential LOW-to-HIGH					mV	
Ios	Short Circuit Output Current	V _{OUT} = 0V			-3.5	-5.0	mA
I _{OZ}	Disabled Output Leakage Current	DO = 0V to 4.6V, Pwr	<u>On</u> = 0V		±1.0	±10.0	μΑ
Transmitte	er Supply Current						•
I _{CCWT}	21:3 Transmitter Power Supply Current		33.0 MHz		28.0	46.2	
	for Worst Case Pattern (With Load)	$R_L = 100 \Omega$, $40.0 MHz$			29.0	51.7	mA
	(Note 10), (Note 11)	See Figure 3 65.0 MHz			34.0	57.2	IIIA
	(85.0 MHz Specification for FIN1217 only)		85.0 MHz		39.0	62.7	
ICCPDT	Powered Down Supply Current	PwrDn = 0.8V			10.0	55.0	μА

Note 8: All Typical values are at $T_A = 25^{\circ}C$ and with $V_{CC} = 3.3V$.

Note 9: Positive current values refer to the current flowing into device and negative values means current flowing out of pins. Voltage are referenced to ground unless otherwise specified (except ΔV_{OD} and V_{OD}).

Note 10: The power supply current for both transmitter and receiver can be different with the number of active I/O channels.

Note 11: The 16-grayscale test pattern tests device power consumption for a "typical" LCD display pattern. The test pattern approximates signal switching needed to produce groups of 16 vertical strips across the display.

Transmitter AC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified.

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
t _{TCP}	Transmit Clock Period		11.76	Т	50.0	ns
t _{TCH}	Transmit Clock (TxCLKIn) HIGH Time	See Figure 6	0.35	0.5	0.65	Т
t _{TCL}	Transmit Clock Low Time		0.35	0.5	0.65	Т
t _{CLKT}	TxCLKIn Transition Time (Rising and Failing)	(10% to 90%) See Figure 7	1.0		6.0	ns
t _{JIT}	TxCLKIn Cycle-to-Cycle Jitter				3.0	ns
t _{XIT}	TxIn Transition Time		1.5		6.0	ns
LVDS Trans	smitter Timing Characteristics			U		
t _{TLH}	Differential Output Rise Time (20% to 80%)	See Figure 4		0.75	1.5	ns
t _{THL}	Differential Output Fall Time (80% to 20%)	See Figure 4		0.75	1.5	ns
t _{STC}	TxIn Setup to TxCLNIn	See Figure 6	2.5			ns
t _{HTC}	TxIn Holds to TCLKIn	(f = 85 MHz) (FIN1217 only)	0			ns
t _{TPDD}	Transmitter Power-Down Delay	See Figure 13, (Note 12)			100	ns
t _{TCCD}	Transmitter Clock Input to Clock Output Delay	See Figure 9			5.5	ns
	Transmitter Clock Input to Clock Output Delay	$(T_A = 25^{\circ}C \text{ and with } V_{CC} = 3.3V)$	2.8		6.8	115
Transmitter	Output Data Jitter (f = 40 MHz) (Note 13)	•	43			
t _{TPPB0}	Transmitter Output Pulse Position of Bit 0		-0.25	0	0.25	ns
t _{TPPB1}	Transmitter Output Pulse Position of Bit 1	See Figure 16	a-0.25	а	a+0.25	ns
t _{TPPB2}	Transmitter Output Pulse Position of Bit 2	1 2 3	2a-0.25	2a	2a+0.25	ns
t _{TPPB3}	Transmitter Output Pulse Position of Bit 3	$a = \frac{1}{f \times 7}$	3a-0.25	3a	3a+0.25	ns
t _{TPPB4}	Transmitter Output Pulse Position of Bit 4	1 30	4a-0.25	4a	4a+0.25	ns
t _{TPPB5}	Transmitter Output Pulse Position of Bit 5	- OF	5a-0.25	5a	5a+0.25	ns
t _{TPPB6}	Transmitter Output Pulse Position of Bit 6	See Figure 16 $a = \frac{1}{f \times 7}$	6a-0.25	6a	6a+0.25	ns
Transmitte	Output Data Jitter (f = 65 MHz) (Note 13)		•	•		
t _{TPPB0}	Transmitter Output Pulse Position of Bit 0		-0.2	0	0.2	ns
t _{TPPB1}	Transmitter Output Pulse Position of Bit 1	See Figure 16	a-0.2	а	a+0.2	ns
t _{TPPB2}	Transmitter Output Pulse Position of Bit 2	$a = \frac{1}{f \times 7}$	2a-0.2	2a	2a+0.2	ns
t _{TPPB3}	Transmitter Output Pulse Position of Bit 3	f x 7	3a-0.2	3a	3a+0.2	ns
t _{TPPB4}	Transmitter Output Pulse Position of Bit 4		4a-0.2	4a	4a+0.2	ns
t _{TPPB5}	Transmitter Output Pulse Position of Bit 5		5a-0.2	5a	5a+0.2	ns
t _{TPPB6}	Transmitter Output Pulse Position of Bit 6		6a-0.2	6a	6a+0.2	ns
Transmitter	Output Data Jitter (f = 85 MHz) (FIN1217 only) (Note	13)				
t _{TPPB0}	Transmitter Output Pulse Position of Bit 0		-0.2	0	0.2	ns
t _{TPPB1}	Transmitter Output Pulse Position of Bit 1	See Figure 16	a-0.2	а	a+0.2	ns
t _{TPPB2}	Transmitter Output Pulse Position of Bit 2	$a = \frac{1}{f \times 7}$	2a-0.2	2a	2a+0.2	ns
t _{TPPB3}	Transmitter Output Pulse Position of Bit 3	$a = \frac{1}{f \times 7}$	3a-0.2	3a	3a+0.2	ns
t _{TPPB4}	Transmitter Output Pulse Position of Bit 4		4a-0.2	4a	4a+0.2	ns
t _{TPPB5}	Transmitter Output Pulse Position of Bit 5		5a-0.2	5a	5a+0.2	ns
t _{TPPB6}	Transmitter Output Pulse Position of Bit 6		6a-0.2	6a	6a+0.2	ns
t _{JCC}	FIN1217 Transmitter Clock Out Jitter	f = 40 MHz		350	370	
	(Cycle-to-Cycle)	f = 65 MHz		210	230	ps
	See Figure 19	f = 85 MHz (FIN1217 only)		110	150	
t _{TPLLS}	Transmitter Phase Lock Loop Set Time (Note 14)	See Figure 11, (Note 13)			10.0	ms

trplls Transmitter Phase Lock Loop Set Time (Note 14) See Figure 11, (Note 13) 10.0 ms

Note 12: Outputs of all transmitters stay in 3-STATE until power reaches 2V. Both clock and data output begins to toggle 10ms after V_{CC} reaches 3V and Power-Down pin is above 1.5V.

Note 13: This output data pulse position works for both transmitter with 21 TTL inputs except the LVDS output bit mapping difference (see Figure 15). Figure 16 shows the skew between the first data bit and clock output. Also 2-bit cycle delay is guaranteed when the MSB is output from transmitter.

Note 14: This jitter specification is based on the assumption that PLL has a ref clock with cycle-to-cycle input jitter less than 2ns.

Receiver DC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified. (Note 15)

Parameter	Test Conditions	Min	Тур	Max	Units
OS DC Characteristics	•			-	
Input High Voltage		2.0		V _{CC}	V
Input Low Voltage		GND		0.8	V
Output High Voltage	$I_{OH} = -0.4 \text{ mA}$	2.7	3.3		V
Output Low Voltage	I _{OL} = 2 mA			0.3	V
Input Clamp Voltage	I _{IK} = -18 mA			-1.5	V
Input Current	V _{IN} = 0V to 4.6V	-10.0		10.0	μΑ
Input/Output Power Off Leakage Current	V _{CC} = 0V, All LVTTL Inputs/Outputs 0V to 4.6V			±10.0	μА
Output Short Circuit Current	V _{OUT} = 0V		-60.0	-120	mA
VDS Input Characteristics		,			
Differential Input Threshold HIGH	Figure 2, Table 2			100	mV
Differential Input Threshold LOW	Figure 2, Table 2	-100			mV
Input Common Mode Range	Figure 2, Table 2	0.05		2.35	V
Input Current	V _{IN} = 2.4V, V _{CC} = 3.6V or 0V	- C		±10.0	μΑ
	V _{IN} = 0V, V _{CC} = 3.6V or 0V	2 /0		±10.0	μΑ
Supply Current	4A				
3:21 Receiver Power Supply Current	33.0	MHz		66.0	
for Worst Case Pattern (With Load)	$C_L = 8 \text{ pF},$ 40.0	MHz	56.0	74.0	
(Note 16)	See Figure 3 65.0	MHz	75.0	102	mA
(85.0 MHz Specification for FIN1218 only)	85.0) MHz	92.0	125	
Powered Down Supply Current	PwrDn = 0.8V (RxOut stays LC	DW)	NA	400	μΑ
	OS DC Characteristics Input High Voltage Input Low Voltage Output High Voltage Output High Voltage Output Low Voltage Input Clamp Voltage Input Current Input/Output Power Off Leakage Current Output Short Circuit Current VDS Input Characteristics Differential Input Threshold HIGH Differential Input Threshold LOW Input Common Mode Range Input Current supply Current 3:21 Receiver Power Supply Current for Worst Case Pattern (With Load) (Note 16) (85.0 MHz Specification for FIN1218 only)	OS DC Characteristics Input High Voltage Input Low Voltage Output High Voltage IoH = −0.4 mA Output Low Voltage IoL = 2 mA Input Clamp Voltage I _{IK} = −18 mA Input Current V _{IN} = 0V to 4.6V Input/Output Power Off Leakage Current V _{CC} = 0V, All LVTTL Inputs/Outputs 0V to 0.00 Output Short Circuit Current V _{OUT} = 0V VDS Input Characteristics Figure 2, Table 2 Differential Input Threshold HIGH Figure 2, Table 2 Input Common Mode Range Figure 2, Table 2 Input Current V _{IN} = 2.4V, V _{CC} = 3.6V or 0V V _{IN} = 0V, V _{CC} = 3.6V or 0V V _{IN} = 0V, V _{CC} = 3.6V or 0V Supply Current 33.0 3:21 Receiver Power Supply Current C _L = 8 pF, See Figure 3 (Note 16) See Figure 3 (85.0 MHz Specification for FIN1218 only)	Description Description	Description Description	Description Description

Note 15: All Typical Values are at T_A = 25°C and with V_{CC} = 3.3V. Positive current values refer to the current flowing into device and negative values means current flowing out of pins. Voltage are referenced to ground unless otherwise specified (except ΔV_{OD} and V_{OD}).

Note 16: The power supply current for the receiver can be different with the number of active I/O channels.

Receiver AC Electrical Characteristics

Over supply voltage and operating temperatures, unless otherwise specified

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
t _{RCOL}	RxCLKOut LOW Time		10.0	11.0		ns
t _{RCOH}	RxCLKOut HIGH Time	See Figure 8	10.0	12.2		ns
t _{RSRC}	RxOut Valid Prior to RxCLKOut	(Rising Edge Strobe)	6.5	11.6		ns
t _{RHRC}	RxOut Valid After RxCLKOut	(f = 40 MHz)	6.0	11.6		ns
t _{RCOP}	Receiver Clock Output (RxCLKOut) Period		15.0	Т	50.0	ns
t _{RCOL}	RxCLKOut LOW Time	See Figure 8	5.0	7.8	9.0	ns
t _{RCOH}	RxCLKOut HIGH Time	(Rising Edge Strobe)	5.0	7.3	9.0	ns
t _{RSRC}	RxOut Valid Prior to RxCLKOut	(f = 65 MHz)	4.5	7.7		ns
t _{RHRC}	RxOut Valid After RxCLKOut	1	4.0	8.4		ns
t _{RCOP}	Receiver Clock Output (RxCLKOut) Period		11.76	Т	50.0	ns
t _{RCOL}	RxCLKOut LOW Time	See Figure 8	4.0	6.3	6.0	ns
t _{RCOH}	RxCLKOut HIGH Time	(Rising Edge Strobe)	4.5	5.4	6.5	ns
t _{RSRC}	RxOut Valid Prior to RxCLKOut	(f = 85 MHz) (FIN1218 only)	3.5	6.3		ns
t _{RHRC}	RxOut Valid After RxCLKOut		3.5	6.5		ns
t _{ROLH}	Output Rise Time (20% to 80%)	C _L = 8 pF	- 4	2.2	5.0	ns
t _{ROHL}	Output Fall Time (80% to 20%)	See Figure 5	.3: 7	2.1	5.0	ns
t _{RCCD}	Receiver Clock Input to Clock Output Delay	See Figure 10 (Note 18)	0.5	0.0		
		$T_A = 25^{\circ}C$ and $V_{CC} = 3.3V$	3.5	6.9	7.5	ns
t _{RPDD}	Receiver Power-Down Delay	See Figure 14			1.0	μs
t _{RSPB0}	Receiver Input Strobe Position of Bit 0	4 76 3	1.0		2.15	ns
t _{RSPB1}	Receiver Input Strobe Position of Bit 1	130	4.5		5.8	ns
t _{RSPB2}	Receiver Input Strobe Position of Bit 2	See Figure 17	8.1		9.15	ns
t _{RSPB3}	Receiver Input Strobe Position of Bit 3	(f = 40 MHz)	11.6		12.6	ns
t _{RSPB4}	Receiver Input Strobe Position of Bit 4		15.1		16.3	ns
t _{RSPB5}	Receiver Input Strobe Position of Bit 5		18.8		19.9	ns
t _{RSPB6}	Receiver Input Strobe Position of Bit 6		22.5		23.6	ns
t _{RSPB0}	Receiver Input Strobe Position of Bit 0		0.7		1.4	ns
t _{RSPB1}	Receiver Input Strobe Position of Bit 1	1	2.9		3.6	ns
t _{RSPB2}	Receiver Input Strobe Position of Bit 2	See Figure 17	5.1		5.8	ns
t _{RSPB3}	Receiver Input Strobe Position of Bit 3	(f = 65 MHz)	7.3		8.0	ns
t _{RSPB4}	Receiver Input Strobe Position of Bit 4	1	9.5		10.2	ns
t _{RSPB5}	Receiver Input Strobe Position of Bit 5	1	11.7		12.4	ns
t _{RSPB6}	Receiver Input Strobe Position of Bit 6	1	13.9		14.6	ns
t _{RSPB0}	Receiver Input Strobe Position of Bit 0		0.49		1.19	ns
t _{RSPB1}	Receiver Input Strobe Position of Bit 1	1	2.17		2.87	ns
t _{RSPB2}	Receiver Input Strobe Position of Bit 2	1	3.85		4.55	ns
t _{RSPB3}	Receiver Input Strobe Position of Bit 3	See Figure 17	5.53		6.23	ns
t _{RSPB4}	Receiver Input Strobe Position of Bit 4	(f = 85 MHz) (FIN1218 only)	7.21		7.91	ns
t _{RSPB5}	Receiver Input Strobe Position of Bit 5	1	8.89		9.59	ns
t _{RSPB6}	Receiver Input Strobe Position of Bit 6	1	10.57		11.27	ns
t _{RSKM}	RxIn Skew Margin	f = 40 MHz; See Figure 18	490			
	(Note 17)	f = 65 MHz; See Figure 18	400			
		f = 85 MHz (FIN1218 only);	252			ps
		See Figure 18	252			
t _{RPLLS}	Receiver Phase Lock Loop Set Time	See Figure 12			10.0	ms
	L					

Note 17: Receiver skew margin is defined as the valid sampling window after considering potential setup/hold time and minimum/maximum bit position.

Note 18: Total channel latency from serializer to deserializer is (T + t_{TCCD}) + (2*T + t_{RCCD}). There is the clock period.

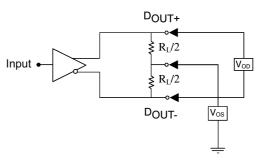
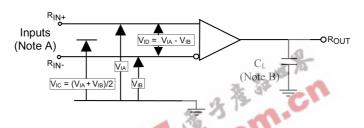



FIGURE 1. Differential LVDS Output DC Test Circuit

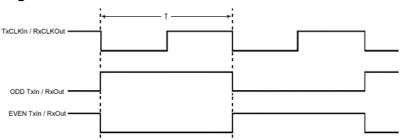

Note A: For all input pulses, t_R or $t_F <= 1$ ns. Note B: C_L includes all probe and jig capacitance.

FIGURE 2. Differential Receiver Voltage Definitions and Propagation Delay and Transition Time Test Circuit

TABLE 2. Receiver Minimum and Maximum Input Threshold Test Voltages

Applied	Voltages	Resulting Differential Input Voltage	Resulting Common Mode Input Voltage
(\	/)	(m V)	(V)
VIA	V _{IB}	V _{ID}	V _{IC}
1.25	1.15	100	1.2
1.15	1.25	-100	1.2
2.4	2.3	100	2.35
2.3	2.4	-100	2.35
0.1	0	100	0.05
0	0.1	-100	0.05
1.5	0.9	600	1.2
0.9	1.5	-600	1.2
2.4	1.8	600	2.1
1.8	2.4	-600	2.1
0.6	0	600	0.3
0	0.6	-600	0.3

AC Loading and Waveforms

Note: The worst case test pattern produces a maximum toggling of digital circuits, LVDS I/O and LVTTL/CMOS I/O. Depending on the valid strobe edge of transmitter, the TxCLKIn can be either rising or falling edge data strobe.

FIGURE 3. "Worst Case" Test Pattern

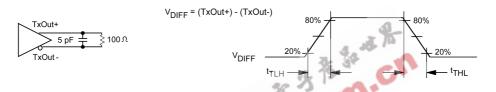


FIGURE 4. Transmitter LVDS Output Load and Transition Times

FIGURE 5. Receiver LVTTL/CMOS Output Load and Transition Times

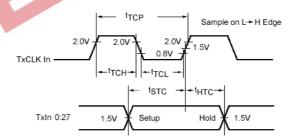


FIGURE 6. Transmitter Setup/Hold and HIGH/LOW Times (Rising Edge Strobe)

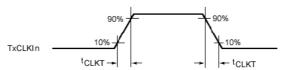


FIGURE 7. Transmitter Input Clock Transition Time

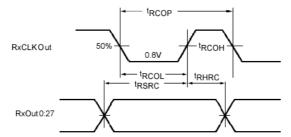


FIGURE 8. Receiver Setup/Hold and HIGH/LOW Times

FIGURE 9. Transmitter Clock In to Clock Out Delay (Rising Edge Strobe)

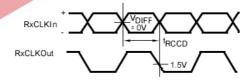
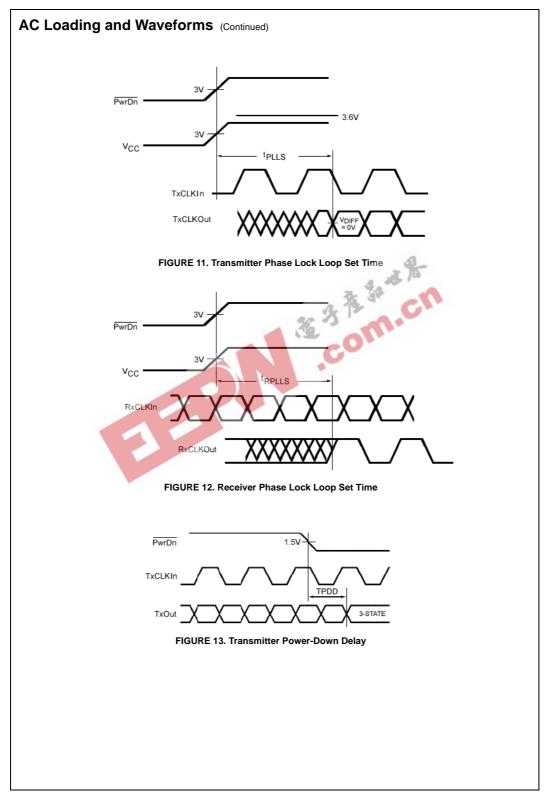



FIGURE 10. Receiver Clock In to Clock Out Delay (Falling Edge Strobe)

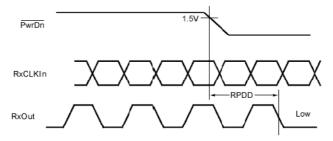
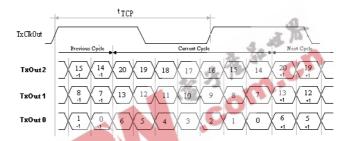



FIGURE 14. Receiver Power-Down Delay

Note: This output data pulse position works for both transmitter with 21 TTL inputs except the LVDS output bit mapping difference. All the information in this diagram tells that the skew between the first data bit and clock output. Also 2-bit cycle delay is guaranteed when the MSB is output from transmitter.

FIGURE 15. 21 Parallel LVTTL Inputs Mapped to 3 Serial LVDS Outputs

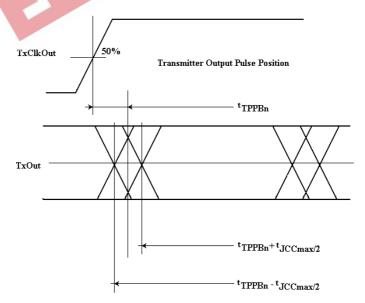
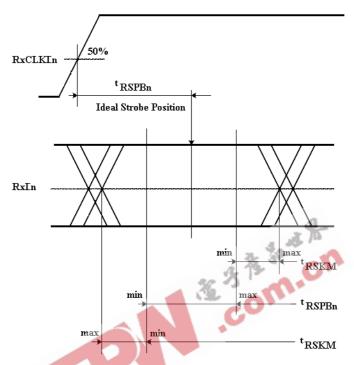
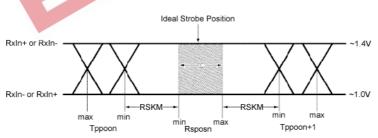
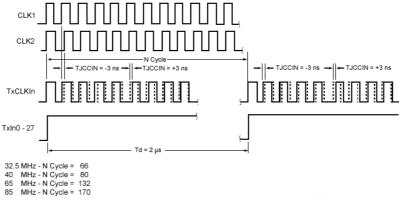


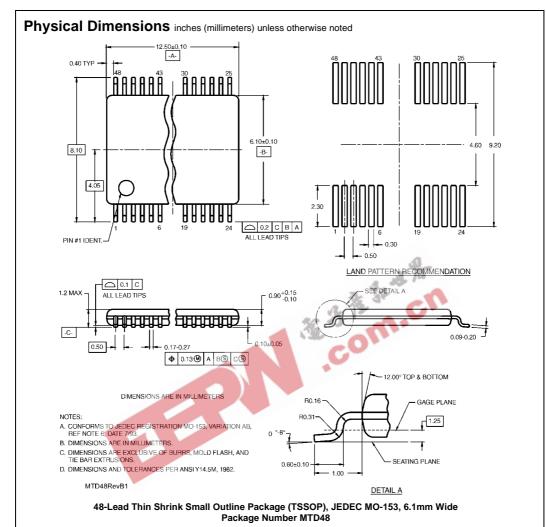
FIGURE 16. Transmitter Output Pulse Bit Position


FIGURE 17. Receiver Input Strobe Bit Position

 $\textbf{Note:} \ t_{\text{RSKM}} \ \text{is the budget for the cable skew and source clock skew plus ISI (Inter-Symbol Interference)}.$

Note: The minimum and maximum pulse position values are based on the bit position of each of the 7 bits within the LVDS data stream across PVT (Process, Voltage Supply, and Temperature).


FIGURE 18. Receiver LVDS Input Skew Margin

Note: This jitter pattern is used to test the jitter response (Clock Out) of the device over the power supply range with worst jitter ±3ns (cycle-to-cycle) clock input. The specific test methodology is as follows: input. The specific test methodology is as follows:

- Switching input data TxIn0 to TxIn20 at 0.5 MHz, and the input clock is shifted to left –3ns and to the right +when data is HIGH (by switching between CLK1 and CLK2 in Figure 11) CLK1 and CLK2 in Figure 11)
- The ±3ns cycle-to-cycle input jitter is the static phase error between the two clock sources. Jumping between two clock sources to simulate the worst case of clock edge jump (3 ns) from graphical controllers. Cycle-to-cycle jitter at TxCLK out pin should be measured cross V_{CC} range with 100mV noise (V_{CC} noise frequency <2 MHz).

FIGURE 19.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and

Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com