May 2004

FAIRCHILD

SEMICONDUCTOR

FDD6688S

30V N-Channel PowerTrench[®] SyncFET[™]

General Description

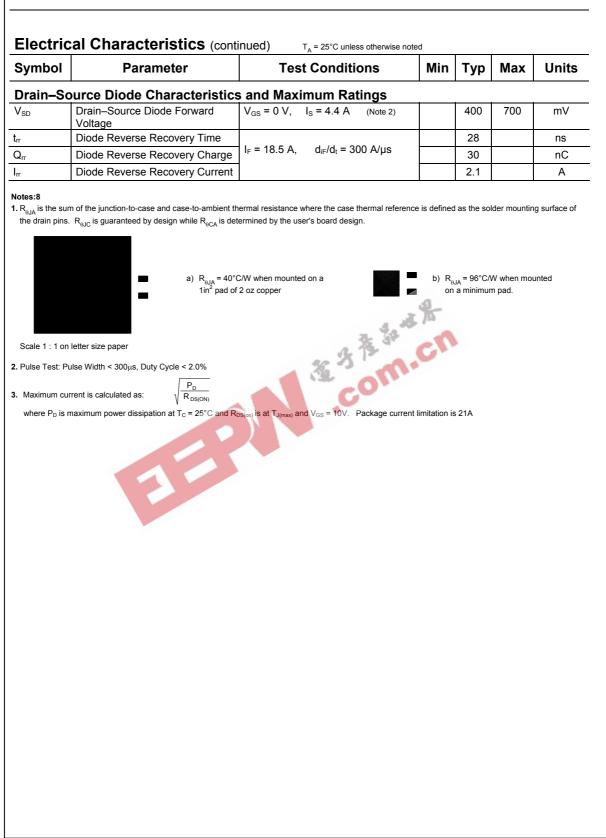
The FDD6688S is designed to replace a single TO-252 MOSFET and Schottky diode in synchronous DC:DC power supplies. This 30V MOSFET is designed to maximize power conversion efficiency, providing a low $R_{\rm DS(ON)}$ and low gate charge. The FDD6688S includes an integrated Schottky diode using Fairchild's monolithic SyncFET technology.

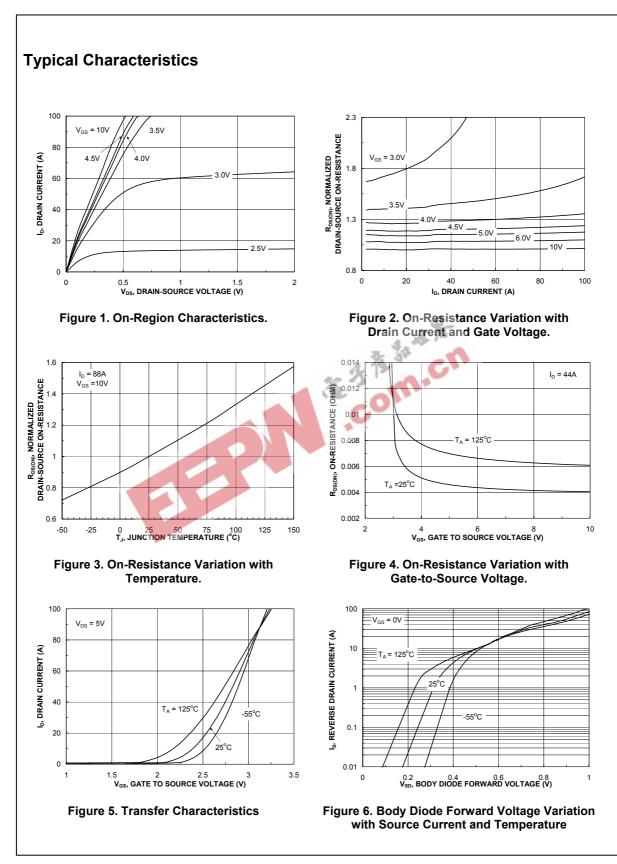
Applications

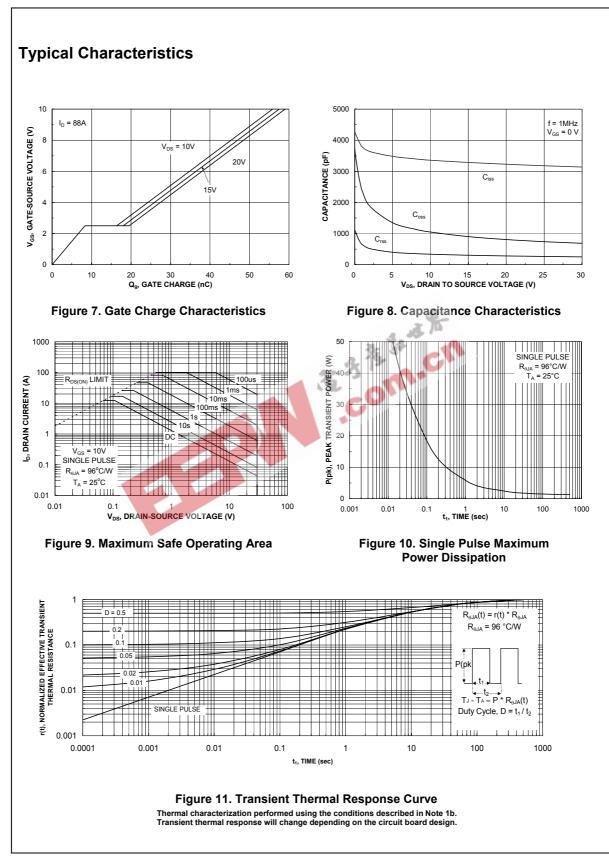
- DC/DC converter
- Motor Drives

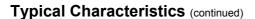
Features

- 88 A, 30 V. $R_{DS(ON)} = 5.1 \text{ m}\Omega \textcircled{0} V_{GS} = 10 \text{ V}$ $R_{DS(ON)} = 6.3 \text{ m}\Omega \textcircled{0} V_{GS} = 4.5 \text{ V}$
- Low gate charge (31 nC typical)
- Fast switching
- High performance trench technology for extremely low R_{DS(ON)}

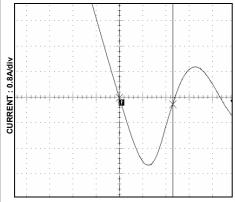



Absolute Maximum Ratings T_A=25°C unless otherwise noted

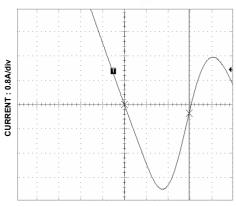

Symbol		Parameter			Ratings	Units	
V _{DSS}	Drain-Source Voltage			30		V	
V _{GSS}	Gate-Sourc	Sate-Source Voltage			± 20		
I _D	Drain Curre	nt – Continuous	(Note 3)		88	А	
		- Pulsed	(Note 1a)		100		
P _D	Power Diss	ipation for Single Opera	tion (Note 1)		69	W	
			(Note 1a)		3.1		
			(Note 1b)		1.3		
T _J , T _{STG}	Operating a	nd Storage Junction Te	-55 to +150		°C		
	Characte						
$R_{ ext{ hetaJC}}$		esistance, Junction-to-Case (Note 1)		1.8		°C/W	
R _{0JA}	Thermal Resistance, Junction-to-Ambient (Note 1a)		40				
		(Note 1b)		96			
Package	e Marking	and Ordering	Information				
Device Marking		Device	Package	Reel Size	Tape width	Quantity	
FDD6688S		FDD6688S	D-PAK (TO-252)	13"	12mm	2500 units	


©2004 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Drain-So	ource Avalanche Ratings (No	ite 2)				
W _{DSS}	Drain-Source Avalanche Energy	Single Pulse, V_{DD} = 15 V, I_D = 21A		501		mJ
I _{AR}	Drain-Source Avalanche Current				21	А
Off Char	acteristics	•	1			
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = 1mA$	30			V
$\Delta BV_{DSS} \Delta T_J$	Breakdown Voltage Temperature Coefficient	I_D = 15mA, Referenced to 25°C		30		mV/°C
DSS	Zero Gate Voltage Drain Current	$V_{DS} = 24 V$, $V_{GS} = 0 V$			500	μA
I _{GSS}	Gate–Body Leakage	$V_{GS} = \pm 20 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			± 100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, \qquad I_D = 1mA$	1	1.4	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	I_D = 15mA, Referenced to 25°C	B	-0.3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = 10 V$, $I_D = 18.5 A$ $V_{GS} = 4.5 V$, $I_D = 16.5 A$	A	4.0 4.7	5.1 6.3	mΩ
		V_{GS} = 10 V, I_D = 18.5 A, T_J =125°C	\mathcal{O}	6.0	7.5	
g FS	Forward Transconductance	V _{DS} = 5 V, I _D = 18.5 A		72		S
Dynamic	Characteristics	132				
Ciss	Input Capacitance	C ⁻		3290		pF
Coss	Output Capacitance	$V_{DS} = 15 V, V_{GS} = 0 V,$		900		pF
Crss	Reverse Transfer Capacitance	f = 1.0 MHz		300		pF
R _G	Gate Resistance	$V_{GS} = 15 \text{ mV}, \text{ f} = 1.0 \text{ MHz}$		1.6		Ω
	g Characteristics (Note 2)		1			
.d(on)	Turn-On Delay Time			13	23	ns
r	Turn–On Rise Time	$V_{DD} = 15 V, I_D = 1 A,$		13	23	ns
d(off)	Turn–Off Delay Time	$V_{GS} = 10 \text{ V}, R_{GEN} = 6 \Omega$		31	50	ns
f	Turn–Off Fall Time	-		64	103	ns
Q _{g(TOT)}	Total Gate Charge at Vgs=10V			58	81	nC
Q _g	Total Gate Charge at Vgs=5V	V _{DD} = 15 V, I _D = 18.5 A		31	44	nC
Q _{gs}	Gate–Source Charge	$v_{DD} = 13 v, v_{D} = 10.3 A$		8		nC
Q _{gd}	Gate–Drain Charge			10		nC

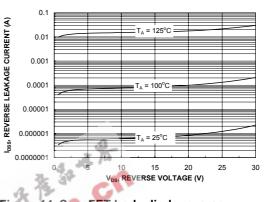


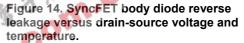
SyncFET Schottky Body Diode Characteristics


Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 12 shows the reverse recovery characteristic of the FDD6688S.

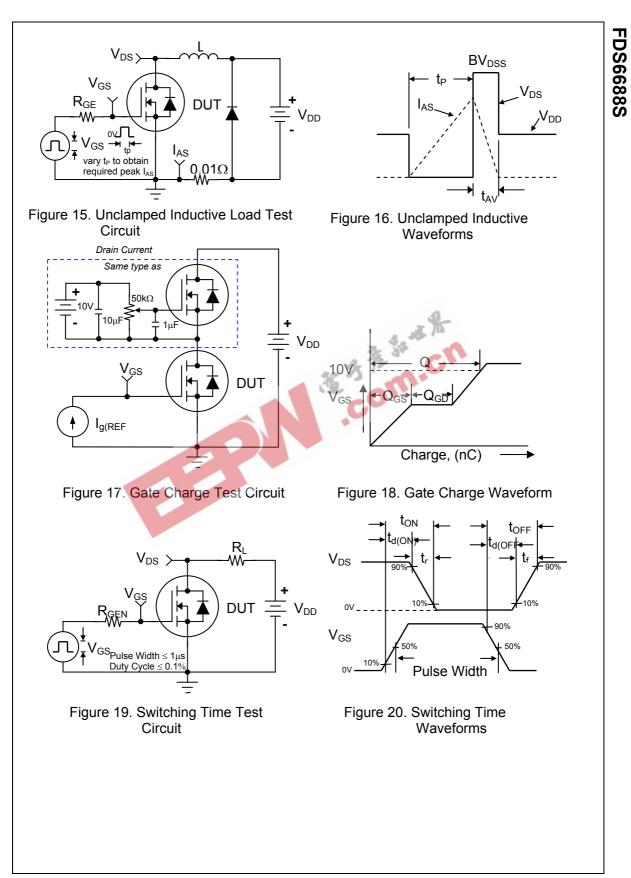
TIME : 12.5ns/div

Figure 12. FDD6688S SyncFET body diode reverse recovery characteristic.


For comparison purposes, Figure 13 shows the reverse recovery characteristics of the body diode of an equivalent size MOSFET produced without SyncFET (FDD6688).



TIME : 12.5ns/div


Figure 13. Non-SyncFET (FDD6688) body diode reverse recovery characteristic.

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

.

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST®	ISOPLANAR™	Power247™	SuperFET™
ActiveArray™	FASTr™	LittleFET™	PowerSaver™	SuperSOT™-3
Bottomless™	FPS™	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-6
CoolFET™	FRFET™	MicroFET™	QFET [®]	SuperSOT™-8
CROSSVOLT™	GlobalOptoisolator™	MicroPak™	QS™	SyncFET™
DOME™	GTO™	MICROWIRE™	QT Optoelectronics [™]	TinyLogic®
EcoSPARK™	HiSeC™	MSX™	Quiet Series [™]	TINYOPTO™
E²CMOS™	I ² C [™]	MSXPro™	RapidConfigure™	TruTranslation™
EnSigna™	<i>i-Lo</i> ™	OCX™	RapidConnect™	UHC™
FACT™	ImpliedDisconnect™	OCXPro™	µSerDes™	UltraFET®
FACT Quiet Series [™]		OPTOLOGIC [®]	SILENT SWITCHER [®]	VCX™
Across the board	d. Around the world.™	OPTOPLANAR™	SMART START™	
The Power France		PACMAN™	SPM™	
Programmable A		POP™	Stealth™	

DISCLAIMER

五下 FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.