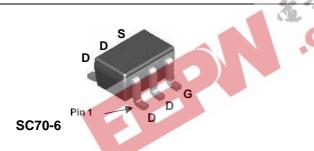
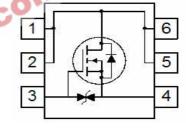
FDG327NZ

SEMICONDUCTOR®

FDG327NZ 20V N-Channel PowerTrench^o MOSFET

General Description


This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized use in small switching regulators, providing an extremely low $R_{DS(ON)}$ and gate charge (Q_G) in a small package.


Applications

- DC/DC converter
- Power management
- · Load switch

Features

- · Fast switching speed
- Low gate charge
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability.

Absolute Maximum Ratings T_{A=25°C} unless otherwise noted

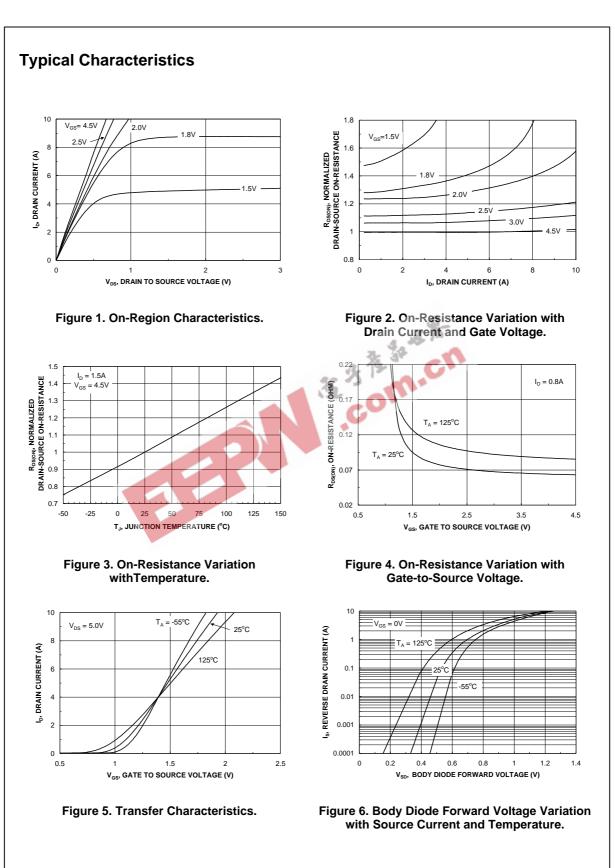
Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-Source Voltage			20	V
V _{GSS}	Gate-Source Voltage		± 8		
l _D	Drain Current – Continuous (Note 1a)		(Note 1a)	1.5	А
		– Pulsed		6	
PD	Power Dissi	pation for Single Operation	(Note 1a)	0.42	W
			(Note 1b)	0.38	
T _J , T _{STG}		nd Storage Junction Tempe	erature Range	-55 to +150	۵°
Therma R _{eJA}	I Charact	eristics sistance, Junction-to-Ambie	ent (Note 1a)	300	
	I Charact	eristics	ent (Note 1a)		
Therma R _{θJA} R _{θJA} Packag	I Charact	eristics sistance, Junction-to-Ambie	ent (Note 1a)	300	°C/₩

©2005 Fairchild Semiconductor Corporation

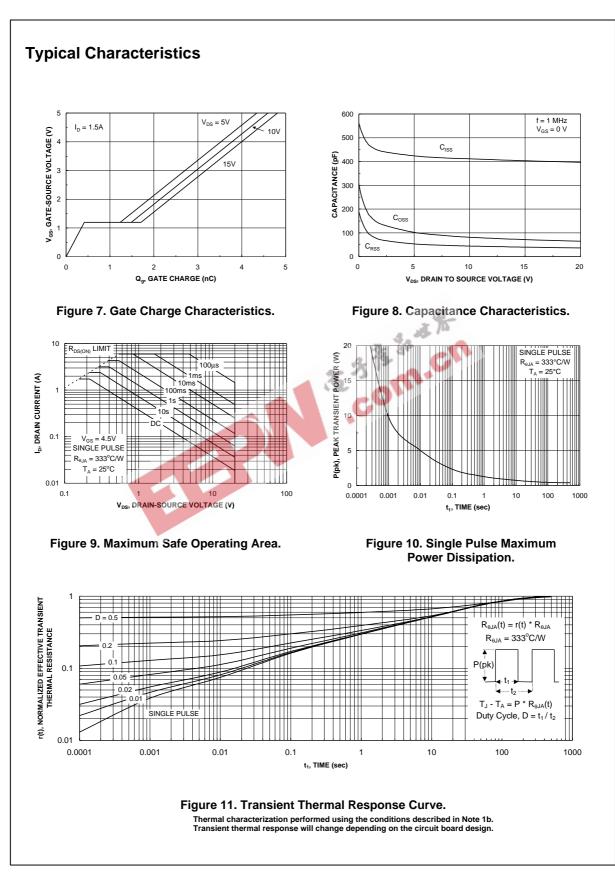
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics	1				
BV _{DSS}	Drain–Source Breakdown Voltage	$V_{GS} = 0 V$, $I_{D} = 250 \mu A$	20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	I_D = 250 µA, Referenced to 25°C		11		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{\text{DS}} = 16 \text{ V}, \qquad V_{\text{GS}} = 0 \text{ V}$			1	μA
I _{GSS}	Gate–Body Leakage	$V_{GS} = \pm 8 \text{ V}, \qquad V_{DS} = 0 \text{ V}$			±10	μA
On Chara	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	0.4	0.7	1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	ID = 250 μ A, Referenced to 25°C		-2		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{l} V_{GS} = 4.5 \ V, I_D = 1.5 \ A \\ V_{GS} = 2.5 \ V, I_D = 1.4 \ A \\ V_{GS} = 1.8 \ V, I_D = 1.2 \ A \\ V_{GS} = 4.5 \ V, \ I_D = 1.5 \ A, \ T_J = 125^\circ C \end{array} $		68 77 90 86	90 100 140 123	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = 4.5V, \qquad V_{DS} = 5 V$	3			А
g fs	Forward Transconductance	$V_{DS} = 10 \text{ V}, I_D = 1.5 \text{ A}$	100	2.2		S
Dynamic	Characteristics	A 34	20			
C _{iss}	Input Capacitance	V _{DS} = 10 V, V _{GS} = 0 V		412		pF
Coss	Output Capacitance	f = 1.0 MHz		81		pF
C _{rss}	Reverse Transfer Capacitance	C ^U		44		pF
R _G	Gate Resistance	$V_{GS} = 15 \text{ mV}, \text{ f} = 1.0 \text{ MHz}$		1.9		Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 10 \text{ V}, \qquad I_D = 1 \text{ A},$		13	23	ns
tr	Turn-On Rise Time	$V_{GS} = 4.5 \text{ V}, R_{GEN} = 6 \Omega$		12	22	ns
t _{d(off)}	Turn-Off Delay Time	1		33	53	ns
t _f	Turn–Off Fall Time	1		18	20	ns
Qg	Total Gate Charge	$V_{DS} = 10 \text{ V}, \qquad I_D = 1.5 \text{ A},$		4.2	6	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 4.5 V$		0.4		nC
Q _{gd}	Gate–Drain Charge			1		nC
Drain-Sc	ource Diode Characteristics	and Maximum Ratings				
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = 0.32 A$ (Note 2)		0.6	1.2	V
t _{rr}	Diode Reverse Recovery Time	$I_F = 1.5 \text{ A}, d_{iF}/d_t = 100 \text{ A}/\mu\text{s}$		4		nS
Q _{rr}	Diode Reverse Recovery Charge	7		2		nC

Notes:

1. $R_{\theta,JA}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{\theta,JC}$ is guaranteed by design while $R_{\theta CA}$ is determined by the user's board design.


2. Pulse Test: Pulse Width < 300 μ s, Duty Cycle < 2.0%

a) 300°C/W when mounted on a 1in² pad of 2 oz copper.



b) 333°C/W when mounted on a minimum pad of 2 oz copper. FDG327NZ

FDG327NZ Rev C(W)

FDG327NZ

FDG327NZ

FDG327NZ Rev C(W)

TRADEMARKS	TRADEMARKS				
3	egistered and unregistered an exhaustive list of all sucl		iconductor owns or is autho	rized to use and is	
ACEx™	FAST®	IntelliMAX™	POP™	SPM™	
ActiveArray™	FASTr™	ISOPLANAR™	Power247™	Stealth™	
Bottomless™	FPS™	LittleFET™	PowerEdge™	SuperFET™	
CoolFET™	FRFET™	MICROCOUPLER™	PowerSaver™	SuperSOT [™] -3	
CROSSVOLT™	GlobalOptoisolator™	MicroFET™	PowerTrench [®]	SuperSOT™-6	
DOME™	GTO™	MicroPak™	QFET [®]	SuperSOT™-8	
EcoSPARK™	HiSeC™	MICROWIRE™	QS™	SyncFET™	
E ² CMOS [™]	l²C™	MSX™	QT Optoelectronics [™]	TinyLogic®	
EnSigna™	<i>i-Lo</i> ™	MSXPro™	Quiet Series [™]	TINYOPTO™	
FACT™	ImpliedDisconnect [™]	OCX™	RapidConfigure™	TruTranslation™	
FACT Quiet Seri	es™	OCXPro™	RapidConnect™	UHC™	
Across the board. Around the world. [™] The Power Franchise [®] Programmable Active Droop [™]		OPTOLOGIC [®] OPTOPLANAR™ PACMAN™	µSerDes™ SILENT SWITCHER [®] SMART START™	UltraFET [®] UniFET™ VCX™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

T

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.