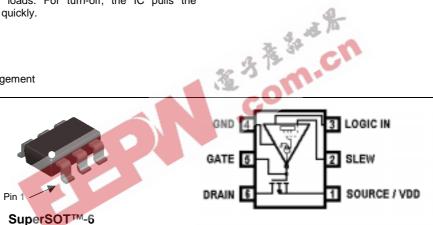


FDC6901L

Integrated Load Switch

General Description


This device is particularly suited for compact power management. In portable electronic equipment where 2.5V to 6V input capability is needed. This load switch integrates a Slew Rate Control Driver that drives a P-Channel Power MOSFET in one tiny SuperSOTTM-6 package. The integrated slew rate control driver is specifically designed to control the turn on of the P-Channel MOSFET in order to limit the inrush current in battery switching applications with high capacitance loads. For turn-off, the IC pulls the MOSFET gate up quickly.

Features

- Three programmable slew rates
- Reduces inrush current
- Minimizes EMI
- Normal turn-off speed
- Low-power CMOS operates over wide voltage range
- High performance trench technology for extremely low R_{DS(ON)}

Applications

- Load switch
- Power management

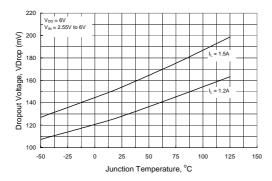
Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V_{DD}	Supply Voltage	–0.5 to 10	V
V _{IN}	DC Input Voltage (Logic Inputs)	-0.7 to 6	V
P _D	P _D Power Dissipation		
T _{STG}	Storage Junction Temperature Range	-55 to +150	°C

Recommended Operating Range

- recommended operating range				
V_{DD}	Supply Voltage	–0.5 to 10	V	
T,	Operating Junction Temperature	-55 to +150	°C	

Thermal Characteristics


$R_{ heta JA}$	Thermal Resistance, Junction to Ambient	180	°C/W
$R_{ heta JC}$	Thermal Resistance, Junction to Case	60	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape Width	Quantity
.901	FDC6901L	7"	8mm	3000 units

	Parameter	Test Conditions	Min	Тур	Max	Units
Logic Lo	evels				I	
V _{IH}	Logic HIGH Input Voltage	V _{DD} = 2.7 V to 6.0 V	75%* V _{DD}			V
V _{IL}	Logic LOW Input Voltage	V _{DD} = 2.7 V to 6.0 V			25%* V _{DD}	V
OFF Ch	aracteristics – Slew Rate Co	ontrol Driver				
BV _{DG}	Supply Input Breakdown Voltage	$I_{DG} = 10 \mu A$, $V_{IN} = 0 V$, $V_{SLEW} = 0 V$	9			V
BV _{SLEW}	Slew Input Breakdown Voltage	$I_{SLEW} = 10 \mu A, V_{IN} = 0 V$	9			V
BV _{IN}	Logic Input Breakdown Voltage	$I_{IN} = 10 \mu A$, $V_{SLEW} = 0 V$	9			V
IR _{DG}	Supply Input Leakage Current	$V_{DG} = 8 \text{ V}, V_{IN} = 0 \text{ V}, V_{SLEW} = 0 \text{ V}$	-		100	nA
IR _{SLEW}	Slew Input Leakage Current	V _{SLEW} = 8 V, V _{IN} = 0 V			100	nA
IR _{IN}	Logic Input Leakage Current	$V_{\text{IN}} = 8 \text{ V}, V_{\text{SLEW}} = 0 \text{ V}$			100	nA
		-				
OFF Ch BV _{IO}	aracteristics – Slew Rate Co	ontrol Driver + P-Channel MOS $I_D = -250 \mu A$	FET 9			l v
IR _{IO}	IO Leakage Current	V _R = 16 V			100	nA
	racteristics – Slew Rate Co		1		l	
I_G	Output/Gate Current	V _{IN} = 6V Siew Pin = OPEN	- 1	90		μΑ
		$V_{GATE} = 2V$ = GROUND = V_{DD}	-	1 10		μA nA
ON Cha	racteristics – P-Channel MC			10		11/-1
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_{D} = -250 \mu\text{A}$	-0.6	-1.0	-1.5	V
V GS(th)			0.0	120	145	mΩ
P	Static Drain-Source On			120	170	111122
R _{DS(ON)}	Static Drain-Source On Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -1.5 \text{ A}$			210	mO
	Resistance	$V_{GS} = -2.5 \text{ V}, I_D = -1.2 \text{ A}$	ET	170	210	mΩ
ON Cha	Resistance racteristics – Slew Rate Co	$V_{GS} = -2.5 \text{ V}, I_D = -1.2 \text{ A}$ ntrol Driver + P-Channel MOSF	ET	170		
ON Cha	Resistance	$V_{GS} = -2.5 \text{ V}, I_D = -1.2 \text{ A}$ ntrol Driver + P-Channel MOSF $V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.5 \text{ A}$	ET		300 300	mΩ mV mV
ON Cha	Resistance racteristics – Slew Rate Co Dropout Voltage	$V_{GS} = -2.5 \text{ V}, I_D = -1.2 \text{ A}$ ntrol Driver + P-Channel MOSF $V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.5 \text{ A}$ $V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A}$	ET	170 160 130	300 300	mV mV
$R_{DS(ON)}$ ON Cha V_{DROP}	Resistance racteristics – Slew Rate Co	$V_{GS} = -2.5 \text{ V}, I_D = -1.2 \text{ A}$ ntrol Driver + P-Channel MOSF $V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.5 \text{ A}$	ET	170	300	mV
ON Cha	Resistance racteristics – Slew Rate Co Dropout Voltage	$\begin{aligned} &V_{GS} = -2.5 \text{ V}, \text{ I}_{D} = -1.2 \text{ A} \\ &\textbf{ntrol Driver + P-Channel MOSF} \\ &V_{DD} = 6 \text{V}, \text{ V}_{IN} = 2.5 \text{V to 6V}, \text{ I}_{L} = 1.5 \text{ A} \\ &V_{DD} = 6 \text{V}, \text{ V}_{IN} = 2.5 \text{V to 6V}, \text{ I}_{L} = 1.2 \text{ A} \\ &V_{DD} = 6 \text{V}, \text{ V}_{IN} = 2.5 \text{V to 6V}, \text{ I}_{L} = 1.5 \text{ A} \end{aligned}$	ET	170 160 130 105	300 300 180	mV mV
ON Cha V _{DROP} R _{ON} I _{LOAD} P-Chani Vsupply =	Resistance racteristics - Slew Rate Co Dropout Voltage Load switch On Resistance Load Current nel MOSFET Switching Tim = 5.5V, VDD = 5.5V, Logic IN = 5.5V	$\begin{aligned} & \textbf{V}_{\text{GS}} = -2.5 \ \textbf{V}, \ \textbf{I}_{\text{D}} = -1.2 \ \textbf{A} \\ & \textbf{ntrol Driver} + \textbf{P-Channel MOSF} \\ & \textbf{V}_{\text{DD}} = 6 \textbf{V}, \ \textbf{V}_{\text{IN}} = 2.5 \textbf{V} \ \text{to} \ 6 \textbf{V}, \ \textbf{I}_{\text{L}} = 1.5 \ \textbf{A} \\ & \textbf{V}_{\text{DD}} = 6 \textbf{V}, \ \textbf{V}_{\text{IN}} = 2.5 \textbf{V} \ \text{to} \ 6 \textbf{V}, \ \textbf{I}_{\text{L}} = 1.2 \ \textbf{A} \\ & \textbf{V}_{\text{DD}} = 6 \textbf{V}, \ \textbf{V}_{\text{IN}} = 2.5 \textbf{V} \ \text{to} \ 6 \textbf{V}, \ \textbf{I}_{\text{L}} = 1.5 \ \textbf{A} \\ & \textbf{V}_{\text{DD}} = 6 \textbf{V}, \ \textbf{V}_{\text{IN}} = 2.5 \textbf{V} \ \text{to} \ 6 \textbf{V}, \ \textbf{I}_{\text{L}} = 1.2 \ \textbf{A} \\ & \textbf{V}_{\text{GS}} = 2.5 \ \textbf{V}, \ \textbf{V}_{\text{DS}} = 6 \ \textbf{V} \end{aligned}$		160 130 105 110	300 300 180	mV mV mΩ
ON Cha V _{DROP} R _{ON} I _{LOAD} P-Chani Vsupply =	Resistance racteristics - Slew Rate Co Dropout Voltage Load switch On Resistance Load Current nel MOSFET Switching Tim	$\begin{aligned} & \textbf{V}_{GS} = -2.5 \ \textbf{V}, \ \textbf{I}_{D} = -1.2 \ \textbf{A} \\ & \textbf{ntrol Driver} + \textbf{P-Channel MOSF} \\ & \textbf{V}_{DD} = 6 \textbf{V}, \ \textbf{V}_{IN} = 2.5 \textbf{V} \ \text{to} \ 6 \textbf{V}, \ \textbf{I}_{L} = 1.5 \ \textbf{A} \\ & \textbf{V}_{DD} = 6 \textbf{V}, \ \textbf{V}_{IN} = 2.5 \textbf{V} \ \text{to} \ 6 \textbf{V}, \ \textbf{I}_{L} = 1.2 \ \textbf{A} \\ & \textbf{V}_{DD} = 6 \textbf{V}, \ \textbf{V}_{IN} = 2.5 \textbf{V} \ \text{to} \ 6 \textbf{V}, \ \textbf{I}_{L} = 1.5 \ \textbf{A} \\ & \textbf{V}_{DD} = 6 \textbf{V}, \ \textbf{V}_{IN} = 2.5 \textbf{V} \ \text{to} \ 6 \textbf{V}, \ \textbf{I}_{L} = 1.2 \ \textbf{A} \\ & \textbf{V}_{DD} = 6 \textbf{V}, \ \textbf{V}_{IN} = 2.5 \textbf{V} \ \text{to} \ 6 \textbf{V}, \ \textbf{I}_{L} = 1.2 \ \textbf{A} \\ & \textbf{V}_{GS} = 2.5 \ \textbf{V}, \ \textbf{V}_{DS} = 6 \ \textbf{V} \end{aligned}$		170 160 130 105 110	300 300 180	mV mV mΩ mΩ A
ON Cha V _{DROP} R _{ON} I _{LOAD} P-Chani Vsupply =	Resistance racteristics - Slew Rate Co Dropout Voltage Load switch On Resistance Load Current nel MOSFET Switching Tim = 5.5V, VDD = 5.5V, Logic IN = 5.5V	$\begin{aligned} &V_{GS} = -2.5 \text{ V, } I_D = -1.2 \text{ A} \\ &\textbf{ntrol Driver + P-Channel MOSF} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.5 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.5 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{GS} = 2.5 \text{ V, } V_{DS} = 6 \text{ V} \end{aligned}$		170 160 130 105 110 6.20 42	300 300 180	mV mV mΩ mΩ A
ON Cha V _{DROP} R _{ON} I _{LOAD} P-Chani Vsupply = t _{don}	Resistance racteristics - Slew Rate Co Dropout Voltage Load switch On Resistance Load Current nel MOSFET Switching Time 5.5V, VDD = 5.5V, Logic IN = 5.5V Output Turn-On Delay Time	$\begin{aligned} &V_{GS} = -2.5 \text{ V, } I_D = -1.2 \text{ A} \\ &\textbf{ntrol Driver + P-Channel MOSF} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.5 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.5 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{GS} = 2.5 \text{ V, } V_{DS} = 6 \text{ V} \end{aligned}$		170 160 130 105 110 6.20 42 115	300 300 180	mV mV mΩ mΩ A
ON Cha V _{DROP} R _{ON} I _{LOAD} P-Chani	Resistance racteristics - Slew Rate Co Dropout Voltage Load switch On Resistance Load Current nel MOSFET Switching Tim = 5.5V, VDD = 5.5V, Logic IN = 5.5V	$\begin{aligned} &V_{GS} = -2.5 \text{ V, } I_D = -1.2 \text{ A} \\ &\textbf{ntrol Driver} + \textbf{P-Channel MOSF} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.5 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{GS} = 2.5 \text{ V, } V_{DS} = 6 \text{ V} \end{aligned}$		170 160 130 105 110 6.20 42	300 300 180	mV mV mΩ mΩ A
ON Cha V _{DROP} R _{ON} I _{LOAD} P-Chani Vsupply = t _{don}	Resistance racteristics - Slew Rate Co Dropout Voltage Load switch On Resistance Load Current nel MOSFET Switching Time 5.5V, VDD = 5.5V, Logic IN = 5.5V Output Turn-On Delay Time	$\begin{aligned} &V_{GS} = -2.5 \text{ V, } I_D = -1.2 \text{ A} \\ &\textbf{ntrol Driver + P-Channel MOSF} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.5 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.5 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{GS} = 2.5 \text{ V, } V_{DS} = 6 \text{ V} \end{aligned}$		170 160 130 105 110 6.20 42 115 6.75	300 300 180	mV mV mΩ mΩ A
ON Cha VDROP RON ILOAD P-Chani Vsupply = tdon	Resistance racteristics - Slew Rate Co Dropout Voltage Load switch On Resistance Load Current nel MOSFET Switching Time 5.5V, VDD = 5.5V, Logic IN = 5.5V Output Turn-On Delay Time	$\begin{array}{c} \textbf{V}_{\text{GS}} = -2.5 \text{ V, } \textbf{I}_{\text{D}} = -1.2 \text{ A} \\ \textbf{ntrol Driver} + \textbf{P-Channel MOSF} \\ \textbf{V}_{\text{DD}} = 6\text{V, } \textbf{V}_{\text{IN}} = 2.5\text{V to 6V, } \textbf{I}_{\text{L}} = 1.5 \text{ A} \\ \textbf{V}_{\text{DD}} = 6\text{V, } \textbf{V}_{\text{IN}} = 2.5\text{V to 6V, } \textbf{I}_{\text{L}} = 1.2 \text{ A} \\ \textbf{V}_{\text{DD}} = 6\text{V, } \textbf{V}_{\text{IN}} = 2.5\text{V to 6V, } \textbf{I}_{\text{L}} = 1.2 \text{ A} \\ \textbf{V}_{\text{DD}} = 6\text{V, } \textbf{V}_{\text{IN}} = 2.5\text{V to 6V, } \textbf{I}_{\text{L}} = 1.2 \text{ A} \\ \textbf{V}_{\text{GS}} = 2.5 \text{ V, } \textbf{V}_{\text{DS}} = 6 \text{ V} \\ \\ \textbf{es} \\ \textbf{J}_{\text{LOAD}} = \textbf{1.5A} \\ \hline \textbf{Slew Pin} = \text{OPEN} \\ &= \text{GROUND} \\ &= \textbf{V}_{\text{DD}} \\ \hline \textbf{Slew Pin} = \text{OPEN} \\ &= \text{GROUND} \\ &= \textbf{V}_{\text{DD}} \\ \hline \textbf{Slew Pin} = \text{OPEN} \\ \hline \textbf{Slew Pin} =$		170 160 130 105 110 6.20 42 115 6.75 124	300 300 180	mV mV mΩ mΩ A
ON Cha V _{DROP} R _{ON} I _{LOAD} P-Chani Vsupply = t _{don}	Resistance racteristics - Slew Rate Co Dropout Voltage Load switch On Resistance Load Current nel MOSFET Switching Time 5.5V, VDD = 5.5V, Logic IN = 5.5V Output Turn-On Delay Time Output Rise Time	$\begin{aligned} &V_{GS} = -2.5 \text{ V, } I_D = -1.2 \text{ A} \\ &\textbf{ntrol Driver} + \textbf{P-Channel MOSF} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.5 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{DD} = 6V, V_{IN} = 2.5V \text{ to } 6V, I_L = 1.2 \text{ A} \\ &V_{GS} = 2.5 \text{ V, } V_{DS} = 6 \text{ V} \end{aligned}$		170 160 130 105 110 6.20 42 115 6.75 124 162	300 300 180	mV mV mΩ mΩ A

Typical Characteristics

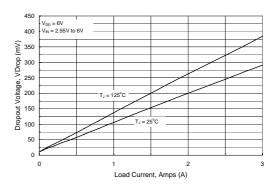
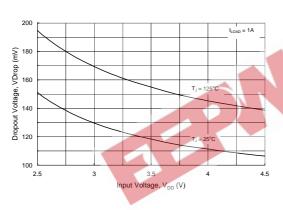



Figure 1. Dropout Voltage vs. Temperature. SLEW = OPEN

Figure 2. Dropout Voltage vs. Load Current. SLEW = OPEN

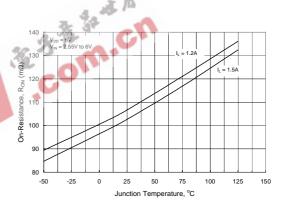
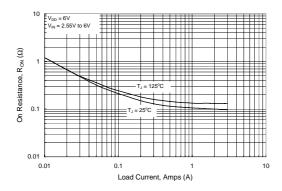



Figure 3. Dropout Voltage vs. Input Voltage. SLEW = OPEN

Figure 4. On-Resistance vs. Temperature. SLEW = OPEN

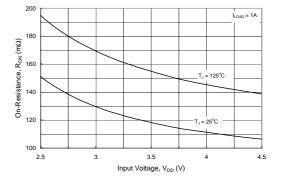


Figure 5. On-Resistance vs. Load Current. SLEW = OPEN

Figure 6. . On-Resistance vs. Input Voltage. SLEW = OPEN

Typical Characteristics

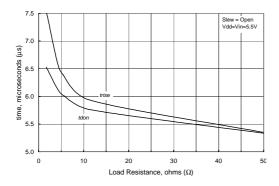


Figure 7. Switching Time vs. Load Resistance. SLEW = OPEN

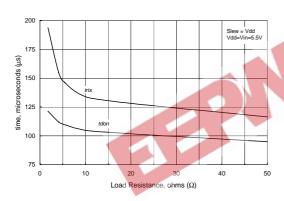


Figure 8. Switching Time vs. Load Resistance. SLEW = GROUND

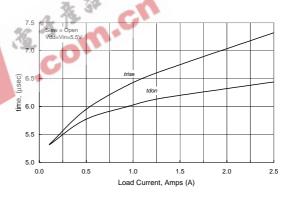


Figure 9. Switching Time vs. Load Resistance. SLEW = V_{DD}

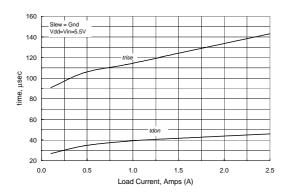


Figure 10. Switching time vs. Load Current. SLEW = OPEN

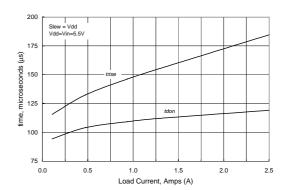


Figure 11. Switching time vs. Load Current. SLEW = GROUND

Figure 12. Switching time vs. Load Current. $SLEW = V_{DD} \label{eq:slew}$

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

FAST®	MICROWIRE™	SILENT SWITCHER®	UHC™
FASTr™	OPTOLOGIC ®	SMART START™	UltraFET®
FRFET™	OPTOPLANAR™	SPM™	VCX™
GlobalOptoisolator™	PACMAN™	STAR*POWER™	
GTO™	POP™	Stealth™	
HiSeC™			
I ² C TM		•	
ISOPLANAR™		•	
LittleFET™			
MicroFET™	QT Optoelectronics™	TinyLogic™	
MicroPak™	Quiet Series™	TruTranslation™	
	FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ I²C™ ISOPLANAR™ LittleFET™ MicroFET™	FASTr TM OPTOLOGIC ® FRFET TM OPTOPLANAR TM GlobalOptoisolator TM PACMAN TM GTO TM POP TM HiSeC TM Power247 TM I ² C TM PowerTrench ® ISOPLANAR TM QFET TM LittleFET TM QS TM MicroFET TM QT Optoelectronics TM	FASTr TM OPTOLOGIC® SMART START TM FRFET TM OPTOPLANAR TM SPM TM GlobalOptoisolator TM PACMAN TM STAR*POWER TM GTO TM POP TM Stealth TM HiSeC TM Power247 TM SuperSOT TM -3 I ² C TM PowerTrench® SuperSOT TM -6 ISOPLANAR TM QFET TM SuperSOT TM -8 LittleFET TM QS TM SyncFET TM MicroFET TM QT Optoelectronics TM TinyLogic TM

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. H5