FDC5612

May 1999

FAIRCHILD

SEMICONDUCTOR IM

FDC5612 60V N-Channel PowerTrench[™] MOSFET

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers.

These MOSFETs feature faster switching and lower gate charge than other MOSFETs with comparable $R_{\rm DS(ON)}$ specifications.

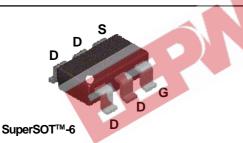
The result is a MOSFET that is easy and safer to drive (even at very high frequencies), and DC/DC power supply designs with higher overall efficiency.

Features

- 4.3 A, 60 V. $R_{DS(ON)} = 0.055$ W @ $V_{GS} = 10$ V $R_{DS(ON)} = 0.064$ W @ $V_{GS} = 6$ V.
- Low gate charge (12.5nC typical).
- Fast switching speed.

1

2

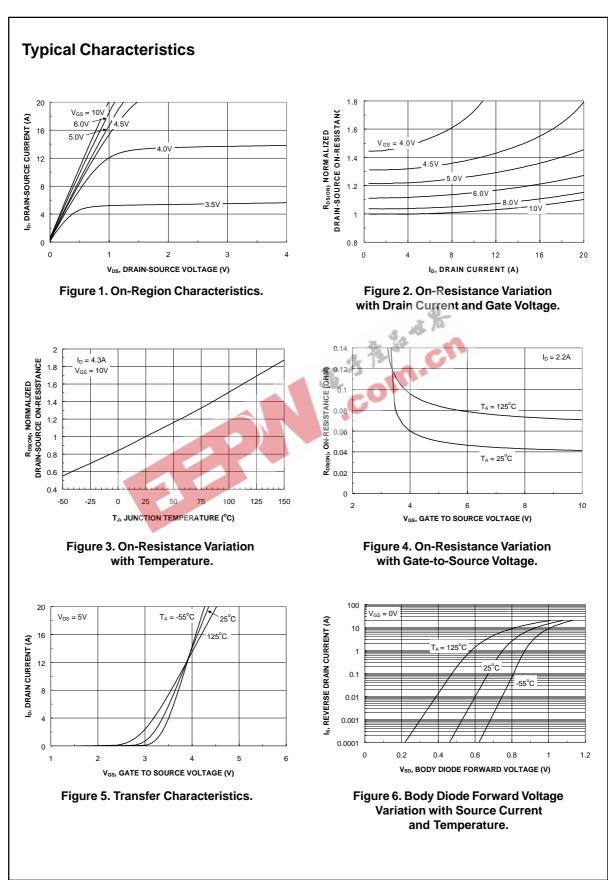

3

- High performance trench technology for extremely low R_{DS(ON)}.
- SuperSOT[™]-6 package: small footprint (72% smaller than standard SO-8); low profile (1mm thick).

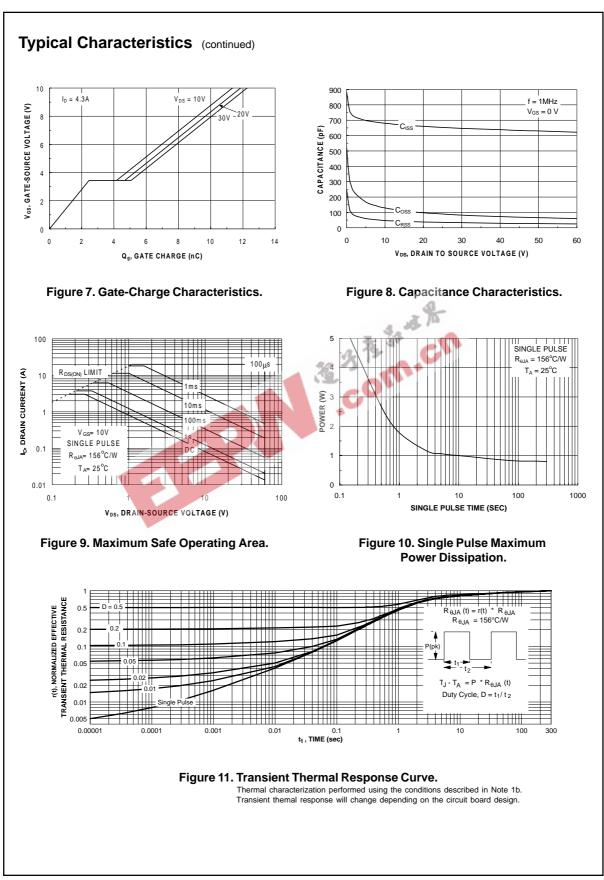
6

5

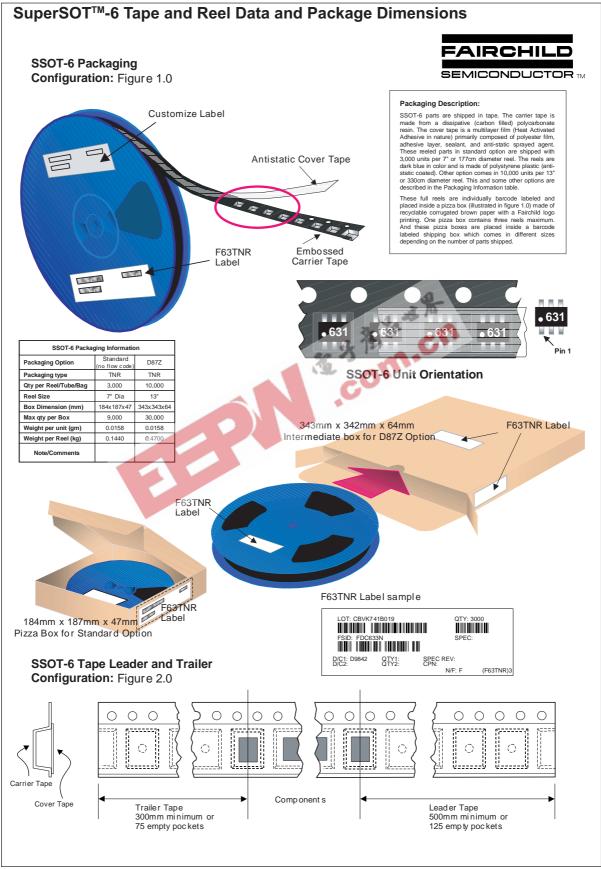
4

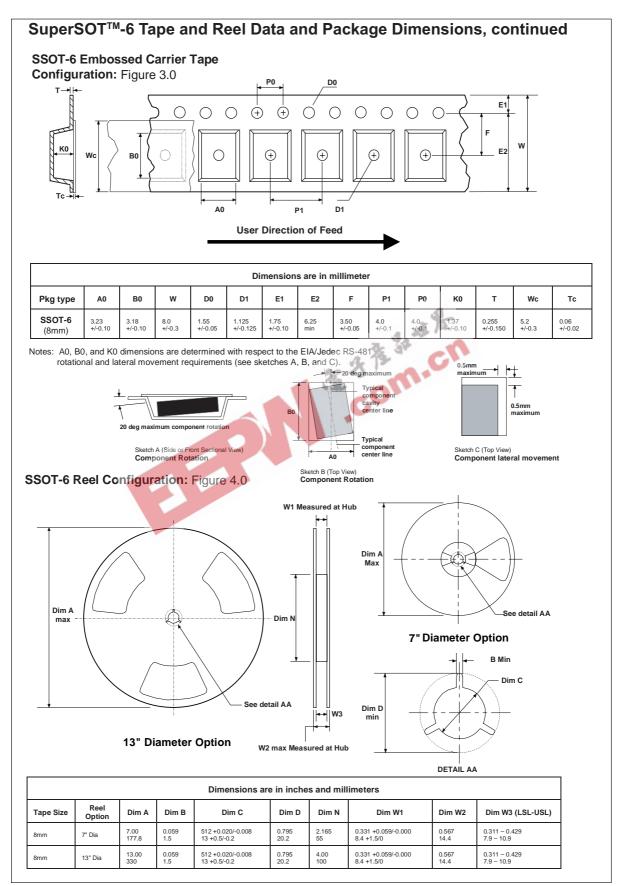


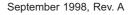
Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-Source Voltage	urce Voltage		V	
V _{GSS}	Gate-Source Voltage		<u>+</u> 20	V	
D	Drain Current - Continuous	(Note 1a)	4.3	А	
	Drain Current - Pulsed		20		
PD	Power Dissipation for Single Operation	(Note 1a)	1.6	W	
		(Note 1b)	0.8		
ΓJ, T _{stq}	Operating and Storage Junction Temperat	ure Range	-55 to +150	۰C	
<mark>Therma</mark> _{Rөл} а	I Characteristics Thermal Resistance, Junction-to-Ambient	(Note 1a)	78	∘C/W	
ς ^{θic}	Thermal Resistance, Junction-to-Case	(Note 1)	30 °C/M		
	e Outlines and Ordering Info	ormation Reel Size	Tape Width	Quantity	

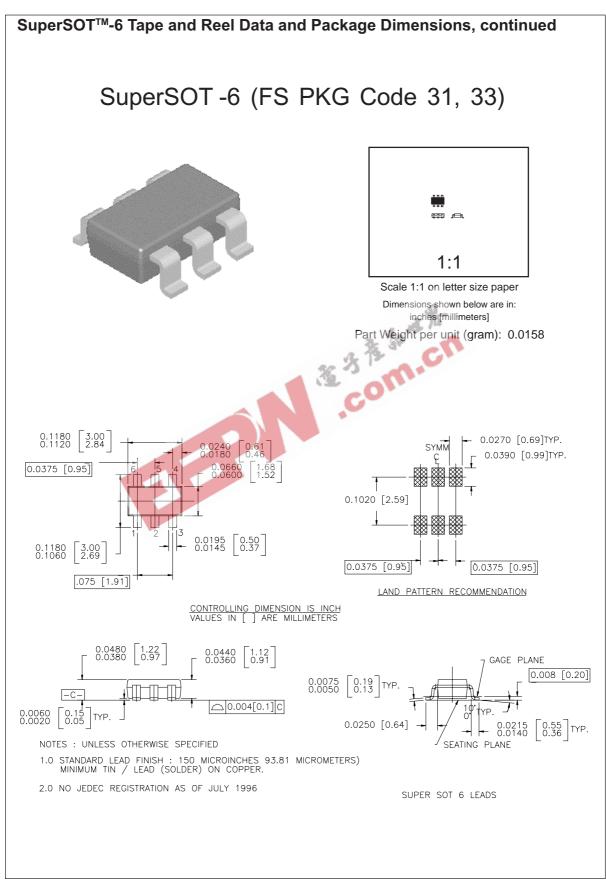

 $\tilde{\mathrm{a}}$ 1999 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics				•	
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V, I_D = 250 \mu A$	60			V
$\frac{\Delta BVDSS}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C		58		mV/∘C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}$			1	μΑ
I _{GSSF}	Gate-Body Leakage Current, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
	Gate-Body Leakage Current, Reverse	$V_{GS} = -20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			-100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2	2.2	4	V
$\frac{\Delta VGS(th)}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, Referenced to 25°C		-5.5		mV/∘C
R _{DS(on)}	Static Drain-Source On-Resistance	$V_{GS} = 10 V, I_D = 4.3 A$ $V_{GS} = 10 V, I_D = 4.3 A, T_J = 125 \circ C$ $V_{GS} = 6 V, I_D = 4 A$		0.042 0.072 0.048	0.055 0.094 0.064	Ω
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$	10			Α
g fs	Forward Transconductance	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 4.3 \text{ A}$	-	14		S
Dynamic	Characteristics	2 7 12				
C _{iss}	Input Capacitance	$V_{DS} = 25 V, V_{GS} = 0 V,$		650		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		80		pF
Crss	Reverse Transfer Capacitance			35		pF
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 30 \text{ V}, \text{ I}_{D} = 1 \text{ A},$		11	20	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \text{ R}_{GEN} = 6 \Omega$		8	18	ns
t _{d(off)}	Turn-Off Delay Time	1		19	35	ns
t _f	Turn-Off Fall Time	1		6	15	ns
Q _g	Total Gate Charge	$V_{DS} = 30 \text{ V}, \text{ I}_{D} = 4.3 \text{ A},$		12.5	18	nC
Q _{gs}	Gate-Source Charge	V _{GS} = 10 V		2.4		nC
Q _{gd}	Gate-Drain Charge	1		2.6		nC
Drain-Sc	ource Diode Characteristics an	d Maximum Ratings	-			
l _s	Maximum Continuous Drain-Source Did				1.3	Α
-	Drain-Source Diode Forward Voltage	$V_{GS} = 0 V, I_S = 1.3 A$ (Note 2)		0.75	1.2	V
of the drain pi	Drain-Source Diode Forward Voltage sum of the junction-to-case and case-to-ambient re- ns. R_{qJC} is guaranteed by design while R_{qCA} is determine when mounted on a 1.0 in ² pad of 2 oz. copper.	sistance where the case thermal reference is d	efined as	0.75 the solder	1.2 mounting	


FDC5612


FDC5612





August 1999, Rev. C

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™
CoolFET™
CROSSVOLT™
E ² CMOS [™]
FACT™
FACT Quiet Series™
FAST [®]
FASTr™
GTO™
HiSeC™

ISOPLANAR[™] MICROWIRE[™] POP[™] PowerTrench[®] QFET[™] QS[™] Quiet Series[™] SuperSOT[™]-3 SuperSOT[™]-6

SuperSOT[™]-8

SyncFET™ TinyLogic™ UHC™ VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.