

© 2002 Fairchild Semiconductor Corporation DS500620

Absolute Maximum Ratings(Note 1)

-0.5V to +7.0V
-0.5V to +7.0V
-0.5V to +7.0V
-50mA
128mA
+/- 100mA
–65°C to +150 $^\circ\text{C}$

Recommended Operating Conditions (Note 3)

Power Supply Operating (V _{CC})	4.0V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to 5.5V
Input Rise and Fall Time (t_r, t_f)	
Switch Control Input	0 ns/V to 5 ns/V
Switch I/O	0 ns/V to DC
Free Air Operating Temperature (T _A)	–40 °C to +85 °C

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

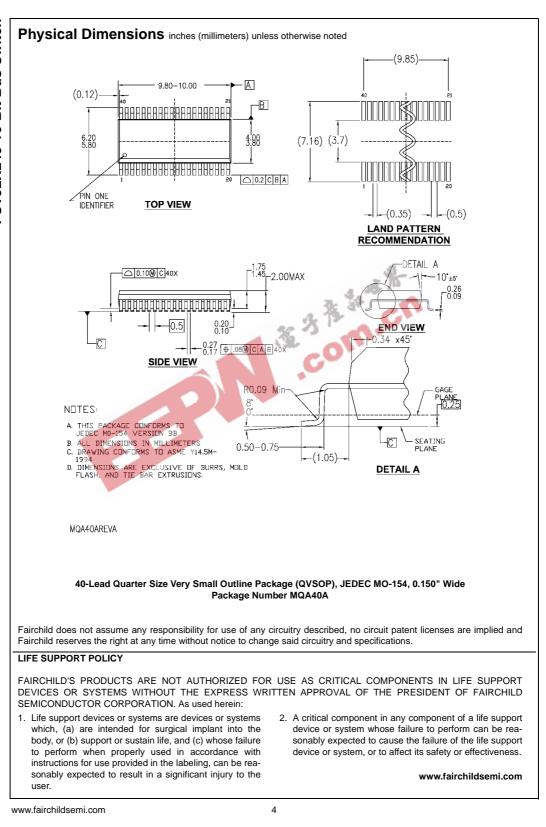
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

- 94									
	Parameter	V _{cc}	$T_A = -40 \degree C \text{ to } +85 \degree C$						
Symbol		(Ÿ)	Min	Typ (Note 4)	Max	Units	Conditions		
V _{IK}	Clamp Diode Voltage	4.5		3.0	-1.2	V	I _{IN} = -18 mA		
VIH	HIGH Level Input Voltage	4.0-5.5	2.0	C		V			
VIL	LOW Level Input Voltage	4.0-5.5			0.8	V			
I _I	Input Leakage Current	5.5			±1.0	μΑ	$0 \le V_{IN} \le 5.5V$		
		0			10	μΑ	V _{IN} = 5.5V		
I _{OZ}	OFF-STATE Leakage Current	5.5			±1.0	μΑ	$0 \le A, B \le V_{CC}$		
R _{ON}	Switch On Resistance	4.5		4	7	Ω	$V_{IN} = 0V, I_{IN} = 64 \text{ mA}$		
	(Note 5)	4.5		4	7	Ω	$V_{IN} = 0V$, $I_{IN} = 30 \text{ mA}$		
		4.5		8	15	Ω	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}$		
		4.0		11	20	Ω	$V_{IN} = 2.4V, I_{IN} = 15 \text{ mA}$		
I _{CC}	Quiescent Supply Current (Note 6)	5.5			3	μΑ	$V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$		
ΔI_{CC}	Increase in I _{CC} per Input	5.5			2.5	mA	One Input at 3.4V		
	(Note 7)						Other Inputs at V_{CC} or GND		

Note 4: Typical values are at V_{CC} = 5.0V and T_A = +25°C

Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.


Note 6: Per V_{CC} pin.

Note 7: Per TTL driven input, control pins only.

AC Electrical Characteristics $T_{A}=-40~^{\circ}C$ to +85 $^{\circ}C,$ $C_L = 50 pF, RU = RD = 500 \Omega$ Figure Conditions Symbol Units Parameter $V_{CC}=4.5-5.5 \text{V}$ $V_{CC}=4.0V$ Number Min Max Min Max Propagation Delay Bus to Bus 0.25 $V_I = OPEN$ 0.25 Figures 1, 2 t_{PHL}, t_{PLH} ns (Note 8) $V_I = 7V$ for t_{PZL} Output Enable Time 1.5 5.9 6.4 Figures 1, 2 $t_{\mathsf{PZH}},\,t_{\mathsf{PZL}}$ ns VI = OPEN for t_{PZH} Output Disable Time $V_I = 7V$ for t_{PLZ} 6.0 1.5 5.7 Figures 1, 2 $t_{\text{PHZ}},\,t_{\text{PLZ}}$ ns $V_I = OPEN \text{ for } t_{PHZ}$ Note 8: This parameter is guaranteed by design but is not tested. The bus switch contributes no propagation delay other than the RC delay of the typical On resistance of the switch and the 50pF load capacitance, when driven by an ideal voltage the source (zero output impedance). Capacitance (Note 9) Conditions Symbol Parameter Тур Max Units C_{IN} $V_{CC} = 5.0V$ Control Pin Input Capacitance 3 pF M BUOM CT $V_{CC}, \overline{OE} = 5.0V$ C_{I/O} 5 Input/Output Capacitance Note 9: $T_A = +25^{\circ}C$, f = 1 MHz, Capacitance is characterized but not tested. **AC Loading and Waveforms** FROM OUTPUT Ş UNDER RD TEST Note: Input driven by 50 Ω source terminated in 50 Ω Note: C_L includes load and stray capacitance Note: Input PRR = 1.0 MHz t_W = 500 ns FIGURE 1. AC Test Circuit t_f = 2.5 ns $t_r = 2.5 \text{ ns}$ - 3.0V 90% 90% t_r = 2.5 ns t_f = 2.5 ns -ENABLE 1.5V 1.5V 3.0V INPUT 90% 90% SWITCH INPUT 10% 10% - GND 1.5V 1.5V t_{PZL} -- t_{PLZ} 10% GND t_{PLH} -tPHL OUTPUT 1.5V - - VOH - V_{OL}+0.3V VOL OUTPUT 1.5V 1.5V t_{PZH} – - t_{PHZ} — - - V_{OH} VOL - V_{OH} - 0.3V OUTPUT 1.5V FIGURE 2. AC Waveforms

FST32X245

www.fairchildsemi.com

