

GS1535A / GS9065A HD-LINX® II Multi-Rate SDI Automatic Reclocker

GS1535A / GS9065A Data Sheet

Features

GS1535A

- SMPTE 292M, 259M and 344M compliant
- Supports data rates of 143, 177, 270, 360, 540, 1483.5, 1485 Mb/s
- Supports DVB-ASI at 270Mb/s
- · Pb-free and RoHS Compliant
- Footprint compatible with the GS1535, GS9065 and GS9065A Automatic Reclockers
- Auto and Manual Modes for rate selection
- Standards indication in Auto Mode
- 4:1 input multiplexer
- Lock Detect Output
- · On-chip Input and Output Termination
- Differential 50Ω inputs and outputs
- · Mute, Bypass and Autobypass functions
- SD/HD indication output to control GS1528A Dual Slew-Rate Cable Driver
- Single 3.3V power supply
- Operating temperature range: 0°C to 70°C

GS9065A

- SMPTE 259M and 344M compliant
- Supports data rates of 143, 177, 270, 360, and 540Mb/s
- Supports DVB-ASI at 270Mb/s
- Pb-free and RoHS Compliant
- Footprint compatible with the GS1535, GS9065 and GS1535A Automatic Reclockers
- Auto and Manual Modes for rate selection
- · Standards indication in Auto Mode
- 4:1 input multiplexer
- Lock Detect Output
- On-chip Input and Output Termination
- Differential 50Ω inputs and outputs
- Mute, Bypass and Autobypass functions
- Single 3.3V power supply
- Operating temperature range: 0°C to 70°C

Applications

GS1535A

 SMPTE 292M, SMPTE 259M and SMPTE 344M Serial Digital Interfaces

GS9065A

SMPTE 259M and SMPTE 344M Serial Digital Interfaces.

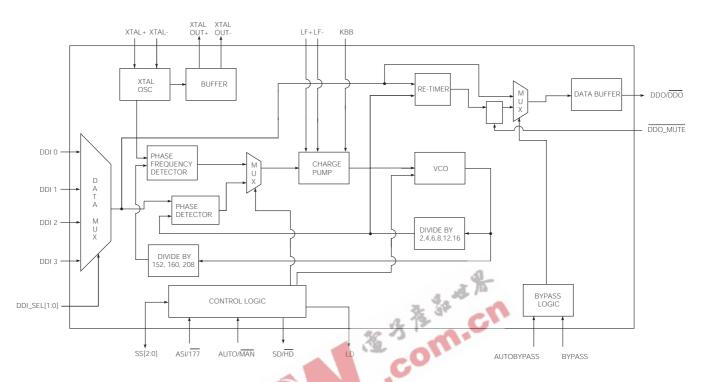
Description

The GS1535A/9065A is a Multi-Rate Serial Digital Reclocker designed to automatically recover the embedded clock from a digital video signal and re-time the incoming video data.

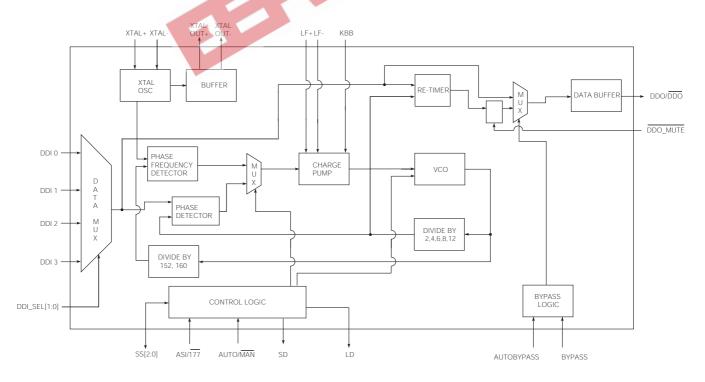
The GS1535A Serial Digital Reclocker will recover the embedded clock signal and re-time the data from a SMPTE 292M, SMPTE 259M or SMPTE 344M compliant digital video signal.

The GS9065A Serial Digital Reclocker will recover the embedded clock signal and re-time the data from a SMPTE 259M or SMPTE 344M compliant digital video signal.

The GS1535A/9065A removes the high frequency jitter components from the bit-serial stream. Input termination is on-chip for seamless matching to 50Ω transmission lines. An LVPECL compliant output interfaces seamlessly to the GS1528A/9068A Cable Driver.


The GS1535A/9065A can operate in either auto or manual rate selection mode. In Auto mode the device will automatically detect and lock onto incoming SMPTE SDI data signals at any supported rate. For single rate data systems, the GS1535A/9065A can be configured to operate in Manual mode. In both modes, the device requires only one external crystal to set the VCO frequency when not locked and provides adjustment free operation.

In systems which require passing of non-SMPTE data rates, the GS1535A/9065A can be configured to either automatically or manually enter a bypass mode in order to pass the signal without reclocking.


The ASI/177 input pin allows for manual selection of support of either 177Mb/s or DVB-ASI inputs.

The GS1535A/9065A is Pb-free, and the encapsulation compound does not contain halogenated flame retardant (RoHS Compliant).

GENNUM 31497 - 3 November 2005 1 of 27

GS1535A Functional Block Diagram

GS9065A Functional Block Diagram

Contents

reatures	1
Applications	1
Description	1
1. Pin Out	4
1.1 GS1535A Pin Assignment	4
1.2 GS9065A Pin Assignment	5
1.3 GS1535A / GS9065A Pin Descriptions	6
2. Electrical Characteristics	9
2.1 Absolute Maximum Ratings	9
2.2 DC Electrical Characteristics	
2.3 AC Electrical Characteristics	10
2.4 Solder Reflow Profiles	12
3. Input / Output Circuits	13
2.4 Solder Reflow Profiles	17
4.1 Slew Rate Phase Lock Loop (S-PLL)	17
4.2 VCO	18
4.3 Charge Pump	18
4.4 Frequency Acquisition Loop — The Phase-Frequency Detector	19
4.5 Phase Acquisition Loop — The Phase Detector	19
4.6 4:1 Input Mux	20
4.7 Automatic and Manual Data Rate Selection	20
4.8 Bypass Mode	21
4.9 DVB-ASI Operation	21
4.10 Lock	22
4.11 Output Drivers	22
4.12 Output Mute	22
5. Typical Application Circuits	23
6. Package & Ordering Information	25
6.1 Package Dimensions	25
6.2 Packaging Data	26
6.3 Ordering Information	26
7. Revision History	27

1. Pin Out

1.1 GS1535A Pin Assignment

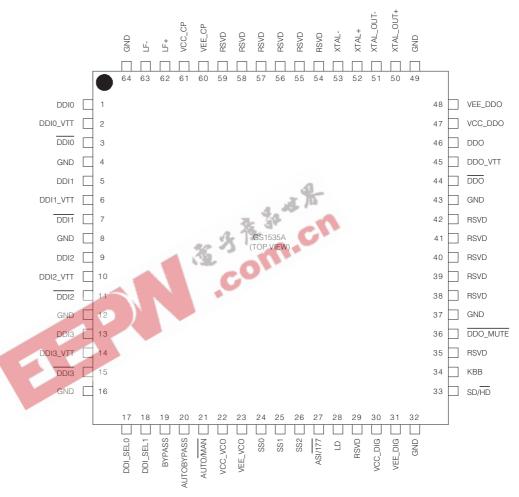


Figure 1-1: 64-Pin LQFP

1.2 GS9065A Pin Assignment

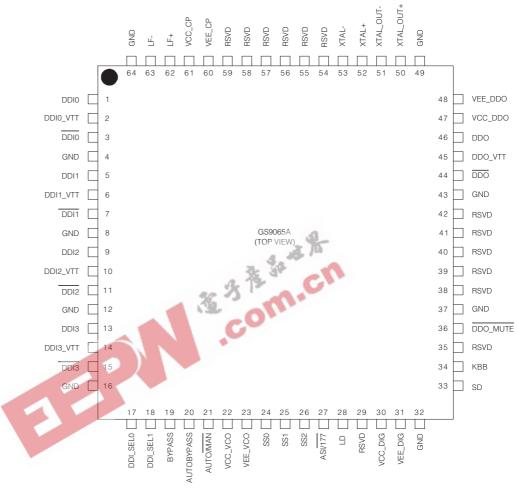


Figure 1-2: 64-Pin LQFP

1.3 GS1535A / GS9065A Pin Descriptions

Table 1-1: GS1535A / GS9065A Pin Descriptions

Pin Number	Name	Туре	Description					
1, 3	DDI0, DDI0	Input	Serial digital differential input 0.					
2	DDI0_VTT	Passive	Center tap of two 50Ω on-c	Center tap of two 50 Ω on-chip termination resistors between DDI0 and $\overline{\text{DDI0}}$.				
4, 8, 12,16, 32, 37, 43, 49, 64	GND	Passive	Recommended connect to	Recommended connect to GND.				
5, 7	DDI1,DDI1	Input	Serial digital differential inp	ut 1.				
6	DDI1_VTT	Passive	Center tap of two 50Ω on-c	hip termination resistors b	etween DDI1 and DDI1.			
9, 11	DDI2, DDI2	Input	Serial digital differential inp	ut 2.				
10	DDI2_VTT	Passive	Center tap of two 50Ω on-c	hip termination resistors b	etween DDI2 and DDI2.			
13, 15	DDI3, DDI3	Input	Serial digital differential inp	ut 3.				
14	DDI3_VTT	Passive	Center tap of two 50Ω on-chip termination resistors between DDI3 and $\overline{\text{DDI3}}$.					
17, 18	DDI_SEL[1:0]	Logic Input	Serial digital input select.	u.				
			DDI_SEL1	DDI_SEL0	INPUT SELECTED			
			0	0	DDI0			
			0	1	DDI1			
			1	0	DDI2			
			1	1	DDI3			
19	BYPASS	Logic Input	Bypass the reclocker stage When BYPASS is HIGH, it		ASS setting.			
20	AUTOBYPASS	Logic Input	Automatically bypasses the This pin is ignored when B	•	PLL is not locked			
21	AUTO/MAN	Logic Input	Auto/Manual select. When set HIGH, the standa When set LOW, the user m pins.	,	•			
22	vcc_vco	Power	Most positive power supply Connect to 3.3V.	connection for the interna	al VCO section.			
23	VEE_VCO	Power	Most negative power supple Connect to GND.	y connection for the intern	al VCO section.			

Table 1-1: GS1535A / GS9065A Pin Descriptions (Continued)

Pin Number	Name	Туре	Descript	ion				
24, 25, 26	SS[2:0]	Bi-directional	When AUTO/MAN is HIGH, SS[0:2] are outputs, displaying the data rate to which the PLL has locked. When AUTO/MAN is LOW, SS[0:2] are inputs, forcing the PLL to lock only to a selected data rate					
		<u>-</u>	SS2	SS1	SS0	DATA RATE SELECTED/FORCED (Mb/s)		
		-	0	0	0	143		
		-	0	0	1	177		
		-	0	1	0	270		
		-	0	1	100	360		
			1	0	0	540		
			1	2 %	30 15/11	1483.5/1485*		
		-		20 1		65A, when AUTO/MAN is LOW, the the device.		
27	ASI/177	Logic Input	When set HIGH, the device disables the 177Mb/s data rate in the data rate detection circuit. This prevents a false lock to 177Mb/s when using DVB-ASI. When set LOW, 177Mb/s lock is possible, however, if a 270Mb/s ASI signal is applied, the device could false lock to the 177MHz signal.					
28	LD	Output	Lock Detect. This pin is set HIGH by the device when the PLL is locked.					
29	RSVD	Reserved	Do not con	nect.				
30	VCC_DIG	Power	Most positi		connection for th	e internal glue logic.		
31	VEE_DIG	Power	Most negat		connection for the	he internal glue logic.		
33	SD/HD	Output	1.485Gbps			en the reclocker has locked to ion-SMPTE standard is applied (i.ε		
				et HIGH when the 360Mbps, or 540N		cked to 143Mbps, 177Mbps,		
			This signal	will go HIGH whe	en the reclocker	has locked to the input SD signal.		
34	KBB	Analog Input		e loop bandwidth				
			Leave this	pin floating for se	rial reclocking ap	oplications.		
35, 38 - 42	RSVD	Reserved	Do not con					
36	DDO_MUTE	Logic Input	Mutes the I	DDO/DDO output	s, when not in by	vpass mode.		

Table 1-1: GS1535A / GS9065A Pin Descriptions (Continued)

Pin Number	Name	Туре	Description
43	GND_DRV	Passive	Recommended connect to GND.
44, 46	DDO, DDO	Output	Differential Serial Digital Outputs.
45	DDO_VTT	Passive	Do not connect.
			NOTE: This pin is not connected internally. Previous external application circuitry from the original GS1535/9065 may remain in order to maintain footprint compatibility.
47	VCC_DDO	Power	Most positive power supply connection for the DDO/\overline{DDO} output driver. Connect to 3.3V.
48	VEE_DDO	Power	Most negative power supply connection for the DDO/ $\overline{\rm DDO}$ output driver. Connect to GND.
50, 51	XTAL_OUT+, XTAL_OUT-	Output	Differential outputs of the reference oscillator used for monitoring or test purposes.
52, 53	XTAL+, XTAL-	Input	Reference crystal input. Connect to the GO1535.
54 - 59	RSVD	Reserved	Do Not Connect. NOTE: These pins are not connected internally. Previous external application circuitry from the original GS1535/9065 may remain in order to maintain footprint compatibility.
60	VEE_CP	Power	Most negative power supply connection for the internal charge pump. Connect to GND.
61	VCC_CP	Power	Most positive power supply connection for the internal charge pump. Connect to 3.3V.
62, 63	LF+, LF-	Passive	Loop filter capacitor connection. (C _{LF} = 47nF).

2. Electrical Characteristics

2.1 Absolute Maximum Ratings

Parameter	Value
Supply Voltage	+3.6 V _{DC}
Input ESD Voltage	2kV
Storage Temperature Range	-50°C < T _s < 125°C
Input Voltage	Vcc + 0.5V
Operating Temperature Range	0°C to 70°C

2.2 DC Electrical Characteristics

Table 2-1: DC Electrical Characteristics

 V_{CC} = 3.3V, T_A = 0°C to 70°C, unless otherwise shown

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Test Levels
Supply Voltage	Vcc	Operating Range	3.1	3.3	3.5	V	3
Supply Current	I _{cc}	T _A =25°C	-	195	230	mA	1
Power Consumption	-	T _A =25°C	_	645	-	mW	5
Logic Inputs	V _{IH}	High	2.0	-	-	V	3
DDI_SEL[1:0], BYPASS <u>,</u> AUT <u>OBYPASS, AUTO</u> /MAN, ASI/177, DDO_MUTE	V _{IL}	Low	-	-	0.8	V	3
Logic Outputs	V _{OH}	250uA Load	2.4	_	_	V	3
SD/HD, LD, and LOS	V _{OL}	250uA Load	_	-	0.4	V	3
Bi-Directional Pins (Manual Mode)	V _{IH}	High	2.0	-	-	V	3
$SS[2:0], AUTO/\overline{MAN} = 0$	V _{IL}	Low	-	-	0.8	V	3
Bi-Directional Pins (Auto Mode)	V _{OH}	High, 250uA Load	2.4	-	-	V	1
SS[2:0], AUTO/ $\overline{MAN} = 1$	V _{OL}	Low, 250uA Load	-	-	0.4	V	1
XTAL_OUT+, XTAL_OUT-	V _{OH}	High	-	V _{CC}	_	V	7
	V _{OL}	Low	-	V _{CC} - 0.285	_	V	7
Serial Input Voltage	-	Common Mode	1.65 + (V _{SID} /2)	-	V _{CC} -(V _{SID} /2)	V	1

Table 2-1: DC Electrical Characteristics (Continued)

 V_{CC} = 3.3V, T_A = 0°C to 70°C, unless otherwise shown

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Test Levels
Output Voltage, DDO/DDO	-	Common Mode	-	V_{CC} - $(V_{OD}/2)$	-	٧	1

TEST LEVELS

- 1. Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges.
- 2. Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges using correlated
- 3. Production test at room temperature and nominal supply voltage.
- 4. QA sample test.
- 5. Calculated result based on Level 1, 2 or 3.
- 6. Not tested. Guaranteed by design simulations.
- 7. Not tested. Based on characterization of nominal parts.
- 8. Not tested. Based on existing design/characterization data of similar product.
- 9. Indirect test.

2.3 AC Electrical Characteristics

Table 2-2: AC Electrical Characteristics

9. Indirect test. 2.3 AC Electric	al Char	racterization data of similar pro	duct.	n.C	•		
Table 2-2: AC Electrical V _{CC} = 3.3V, T _A = 0°C to 70°C		s tics wise shown	CO				
Parameter	Symbol	Conditions	Min	Тур	Max	Units	Test Levels
Serial Input Data Rate	- 1	GS1535A	143	_	1485	Mb/s	3
	-	GS9065A	143	-	540	Mb/s	3
Serial Input Jitter Tolerance	-	Worst case modulation (e.g. square wave modulation)	0.8	-	-	UI	1
		143, 270, 360, 1485 Mb/s					
PLL Lock Time - Asynchronous	t _{ALOCK}	-	-	-	10	ms	6,7
GS1535A PLL Lock Time - Synchronous	t _{SLOCK}	C _{LF} =47nF, SD/HD=0	-	-	10	us	6,7
Synchronous	t _{SLOCK}	C _{LF} =47nF, SD/HD=1	_	_	39	us	6,7
GS9065A PLL Lock Time - Synchronous	t _{SLOCK}	C _{LF} =47nF	-	-	39	us	6,7
Serial Output Rise/Fall Time	t _{rDDO}	50Ω load (on chip)	_	114	-	ps	6,7
(20% - 80%)	t _{fDDO}	50Ω load (on chip)	_	106	_	ps	6,7
Serial Input Swing	V _{SID}	100 Ω load (on chip)	100	-	800	mV _{p-p}	6,7
Serial Output Swing	V _{OD}	100 Ω load differential	1400	1600	2200	mV _{p-p}	6,7

Table 2-2: AC Electrical Characteristics (Continued)

 V_{CC} = 3.3V, T_A = 0°C to 70°C, unless otherwise shown

Parameter	Symbol	Conditions	Min	Тур	Max	Units	Test Levels
Serial Output Jitter	t _{OJ}	143 Mb/s	_	0.02	-	UI	1
KBB = Float PRN, 2 ²³ -1	t _{OJ}	177 Mb/s	-	0.02	-	UI	1
Measurement is output jitter	t _{OJ}	270 Mb/s	-	0.02	0.09	UI	1
that includes input jitter from BERT.	t _{OJ}	360 Mb/s	-	0.03	-	UI	1
	t _{OJ}	540 Mb/s	-	0.03	0.09	UI	1
	t _{OJ}	1485 Mb/s (GS1535A only)	-	0.06	0.13	UI	1
	t _{OJ}	Bypass	-	0.06	0.13	UI	1
Loop Bandwidth	BW _{LOOP}	1.485 Gb/s, KBB = FLOAT (GS1535A only)	九卷	1.75	-	MHz	6,7
	BW _{LOOP}	1.485 Gb/s, KBB = GND, <0.1dB Peaking (GS1535A only)	CO1	3.2	-	MHz	6,7
	BW _{LOOP}	270 Mb/s, KBB = FLOAT	_	520	-	KHz	6,7
	BW _{LOOP}	270 Mb/s, KBB = GND	_	1000	-	KHz	6,7

TEST LEVELS

- 1. Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges.
- 2. Production test at room temperature and nominal supply voltage with guardbands for supply and temperature ranges using correlated test
- 3. Production test at room temperature and nominal supply voltage.
- 4. QA sample test.
- 5. Calculated result based on Level 1, 2 or 3.
- 6. Not tested. Guaranteed by design simulations.
- 7. Not tested. Based on characterization of nominal parts.
- 8. Not tested. Based on existing design/characterization data of similar product.
- 9. Indirect test.

2.4 Solder Reflow Profiles

GENNUM

The device is manufactured with Matte-Sn terminations and is compatible with both standard eutectic and Pb-free solder reflow profiles. MSL qualification was performed using the maximum Pb-free reflow profile shown in Figure 2-1. The recommended standard Pb reflow profile is shown in Figure 2-2.

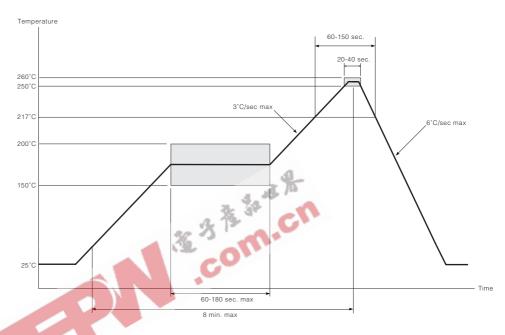


Figure 2-1: Maximum Pb-free Solder Reflow Profile (Preferred)

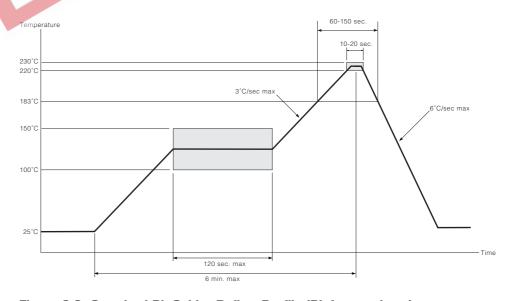


Figure 2-2: Standard Pb Solder Reflow Profile (Pb-free package)

3. Input / Output Circuits

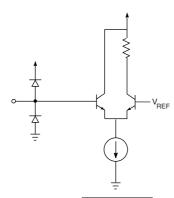


Figure 3-1: DDO_MUTE, BYPASS

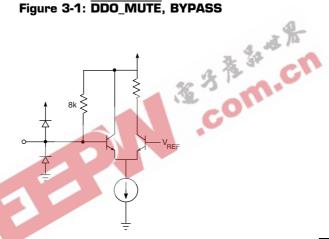


Figure 3-2: DDI_SEL[1:0], AUTOBYPASS, AUTO/ $\overline{\text{MAN}}$, ASI/ $\overline{177}$

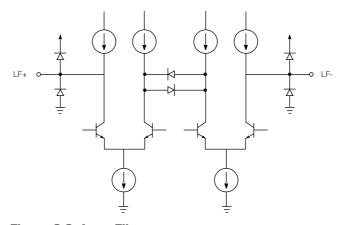


Figure 3-3: Loop Filter

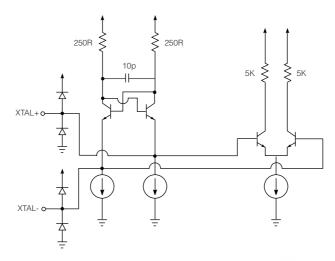


Figure 3-4: Crystal Input

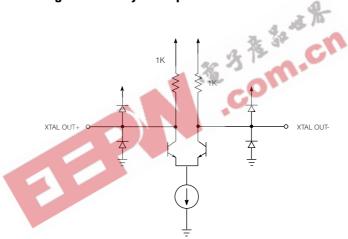


Figure 3-5: Crystal Output Buffer

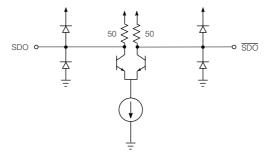


Figure 3-6: Serial Data Outputs

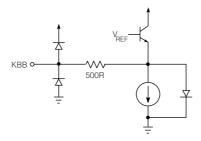


Figure 3-7: KBB

Figure 3-8: Indicator Outputs: SD/HD, LD

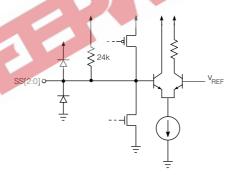


Figure 3-9: Standard Select/Indication Bi-directional Pins

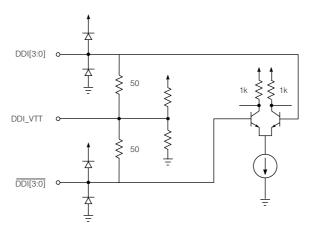


Figure 3-10: Serial Data Inputs

4. Detailed Description

The GS1535A/9065A is a Multi-Rate Serial Digital Reclocker designed to automatically recover the embedded clock from a digital video signal and re-time the incoming video data.

The GS1535A Serial Digital Reclocker will recover the embedded clock signal and re-time the data from a SMPTE 292M, SMPTE 259M or SMPTE 344M compliant digital video signal.

The GS9065A Serial Digital Reclocker will recover the embedded clock signal and re-time the data from a SMPTE 259M or SMPTE 344M compliant digital video signal.

Using the functional block diagram (page 2) as a guide, Slew Rate Phase Lock Loop (S-PLL) on page 17 to Output Mute on page 22 describes each aspect of the GS1535A/9065A in detail.

4.1 Slew Rate Phase Lock Loop (S-PLL)

The term "slew" refers to the output phase of the PLL in response to a step change at the input. Linear PLLs have an output phase response characterized by an exponential response whereas an S-PLL's output is a ramp response (see Figure 4-1). Because of this non-linear response characteristic, traditional small signal analysis is not possible with an S-PLL.

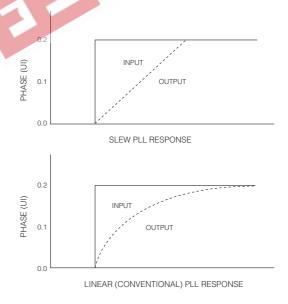


Figure 4-1: PLL Characteristics

The S-PLL offers several advantages over the linear PLL. The Loop Bandwidth of an S-PLL is independent of the transition density of the input data. Pseudo-random data has a transition density of 0.5 verses a pathological signal which has a transition density of 0.05. The loop bandwidth of a linear PLL will change proportionally with this change in transition density. With an S-PLL, the loop bandwidth is defined by the jitter at the data input. This translates to infinite loop bandwidth with a zero jitter input signal. This allows the loop to correct for small variations in the input jitter quickly, resulting in very low output jitter. The loop bandwidth of the GS1535A/9065A's PLL is defined at 0.2UI of input jitter.

The PLL consists of two acquisition loops. First is the Frequency Acquisition (FA) loop. This loop is active when the device is not locked and is used to achieve lock to the supported data rates. Second is the phase acquisition (PA) loop. Once locked, the PA loop tracks the incoming data and makes phased corrections to produce a re-clocked output.

4.2 VCO

The internal VCO of the GS1535A/9065A is a ring oscillator. It is trimmed at the time of manufacture to capture all data rates over temperature and operation voltage ranges.

Integrated into the VCO is a series of programmable dividers used to achieve all serial data rates, as well as additional dividers for the frequency acquisition loop.

4.3 Charge Pump

A common charge pump is used for the PLL of the GS1535A/9065A.

During frequency acquisition, the charge pump has two states, "pump-up" and "pump-down," which is produced by a leading or lagging phase difference between the input and the VCO frequency.

During phase acquisition, there are two levels of "pump-up" and two levels of "pump down" produced for leading and lagging phase difference between the input and VCO frequency. This is to allow for greater precision of VCO control.

The charge pump produces these signals by holding the integrated frequency information on the external loop-filter capacitor, C_{LF} . The instantaneous frequency information is the result of the current flowing through an internal resistor connected to the loop-filter capacitor.

4.4 Frequency Acquisition Loop — The Phase-Frequency Detector

An external crystal of 14.140 MHz is used as a reference to keep the VCO centered at the last known data rate. This allows the device to achieve a fast synchronous lock, especially in cases where a known data rate is interrupted. The crystal reference is also used to clock internal timers and counters. To keep the optimal performance of the reclocker over all operating conditions, the crystal frequency must be 14.140 MHz, +/-50ppm. The GO1535 meets this specification and is available from GENNUM.

The VCO is divided by a selected ratio which is dependant on the input data rate. The resultant is then compared to the crystal frequency. If the divided VCO frequency and the crystal frequency are within 1% of each other, the PLL is considered to be locked to the input data rate.

4.5 Phase Acquisition Loop — The Phase Detector

The phase detector is a digital quadrature phase detector. It indicates whether the input data is leading or lagging with respect to a clock that is in phase with the VCO (I-clk) and a quadrature clock (Q-clk). When the phase acquisition loop (PA loop) is locked, the input data transition is aligned to the falling edge of I-clk and the output data is re-timed on the rising edge of I-clk. During high input jitter conditions (>0.25UI), Q-clk will sample a different value than I-clk. In this condition, two extra phase correction signals will be generated which instructs the charge pump to create larger frequency corrections for the VCO.

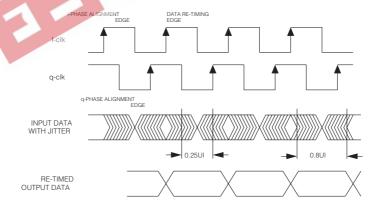


Figure 4-2: Phase Detector Characteristics

When the PA loop is active, the crystal frequency and the incoming data rate are compared. If the resultant is more that 2%, the PLL is considered to be unlocked and the system jumps to the FA loop.

4.6 4:1 Input Mux

The 4:1 input mux allows the connection of four independent streams of video/data. There are four differential inputs (DDI[3:0] and DDI[3:0]). The active channel can be selected via the DDI_SEL[1:0] pins. Table 4-1 shows the input selected for a given state at DDI_SEL[1:0].

Table 4-1: Bit Pattern for Input Select

DDI_SEL[1:0]	Selected Input
00	DDI0
01	DDI1
10	DDI2
11	DDI3

The DDI inputs are designed to be DC interfaced with the output of the GS1524A/9064A Cable Equalizer. There are on chip 50Ω termination resistors which come to a common point at the DDI_VT pins. Connect a 10nF capacitor to this pin and connect the other end of the capacitor to ground. This terminates the transmission line at the inputs for optimum performance.

If only one input pair is used, connect the unused positive inputs to +3.3V and leave the unused negative inputs floating. This helps to eliminate crosstalk from potential noise that would couple to the unused input pair.

4.7 Automatic and Manual Data Rate Selection

The GS1535A/9065A can be configured to manually lock to a specific data rate or automatically search for and lock to the incoming data rate. The AUTO/MAN pin selects automatic data rate detection mode (Auto mode) when HIGH and manual data rate selection mode (Manual mode) when LOW.

In Auto mode, the SS[2:0] bi-directional pins become outputs and the bit pattern indicates the data rate that the PLL is locked to (or previously locked to). The "search algorithm" cycles through the data rates and starts over if that data rate is not found (see Figure 4-3).

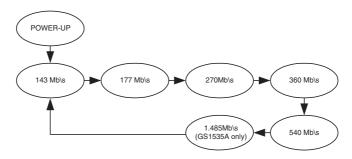


Figure 4-3: Data Rate Search Pattern

In Manual mode, the SS[2:0] pins become inputs and the data rate can be programmed by the application layer. In this mode, the search algorithm is disabled and the PLL will only lock to the data rate selected.

Table 4-2 shows the SS[2:0] pin settings for either the data rate selected (in Manual mode) or the data rate that the PLL has locked to (in Auto mode).

Table 4-2: Data Rate Indication/Selection Bit Pattern

SS[2:0]	Data Rate (Mb/s)
000	143
001	177
010	270
011	360
100	540
101*	1485/1483.5

^{*} This setting only applies to the GS1535A. For the GS9065A, when AUTO/ $\overline{\text{MAN}}$ is LOW, the pin settings SS[0:2] = 101 will be ignored by the device.

4.8 Bypass Mode

In Bypass mode, the GS1535A/9065A passes the data at the inputs directly to the outputs. There are two pins that control the bypass function: BYPASS and AUTOBYPASS.

When BYPASS is set HIGH by the application layer, the GS1535A/9065A will be in Bypass mode.

When AUTOBYPASS is set HIGH by the application layer, the GS1535A/9065A will be configured to enter Bypass mode only when the PLL has not locked to a data rate. When BYPASS is set HIGH, AUTOBYPASS will be ignored.

When the PLL is not locked, and both BYPASS and AUTOBYPASS are set LOW, the serial digital output DDO/DDO will produce invalid data.

4.9 DVB-ASI Operation

The GS1535A/9065A will also re-clock DVB-ASI at 270 Mb/s. When reclocking DVB-ASI data set the ASI/177 pin HIGH to prevent a false lock to 177Mb/s. If ASI/177 is not set HIGH, a false lock may occur since there is a harmonic present in idle patterns (K28.5) which is very close the 177 Mb/s data rate (EIC 1179). Note that setting the ASI/177 pin HIGH will disable the 177 Mb/s search when the device is in Auto mode, consequently the GS1535A/9065A will not lock to that data rate.

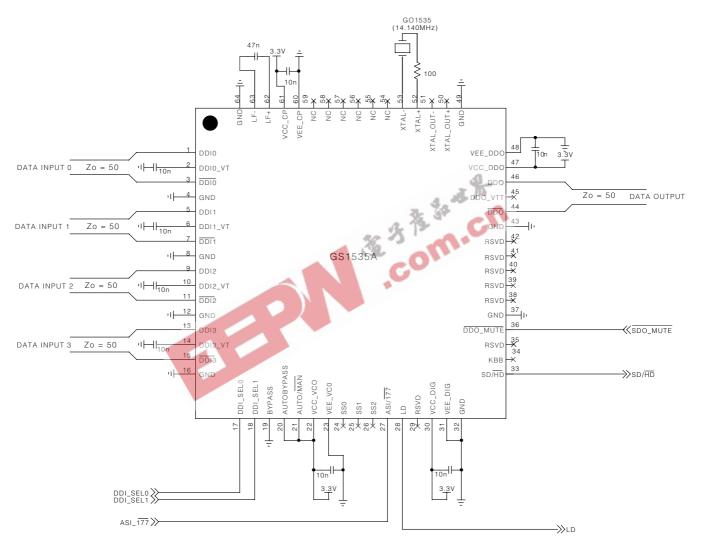
4.10 Lock

The LOCK DETECT signal, LD, is an active high output which indicates when the PLL is locked.

The internal lock logic of the GS1535A/9065A includes a system which monitors the Frequency Acquisition Loop and the Phase Acquisition Loop as well as a monitor to detect harmonic lock.

4.11 Output Drivers

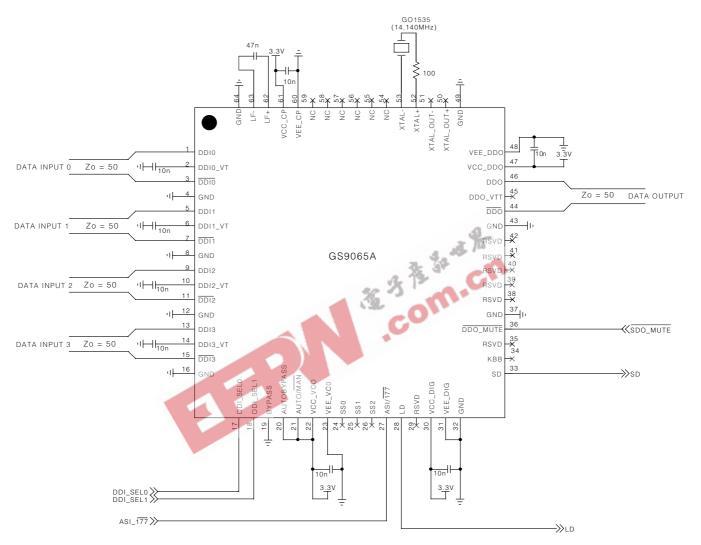
The device's serial digital data outputs (DDO/ \overline{DDO}) have a nominal voltage of 800mv single ended or 1600mV differential when terminated into a 50 Ω load.


4.12 Output Mute

The DDO_MUTE pin is provided to allow muting of the re-timed output.

When the PLL is locked and the device is reclocking, setting $\overline{\text{DDO}}_\text{MUTE} = \text{LOW}$ will force the serial digital outputs $\overline{\text{DDO}}_\overline{\text{DDO}}$ to mute. However, if the GS1535A/9065A is in Bypass mode, (AUTOBYPASS = HIGH and/or BYPASS = HIGH), $\overline{\text{DDO}}_\text{MUTE}$ will have no effect on the output.

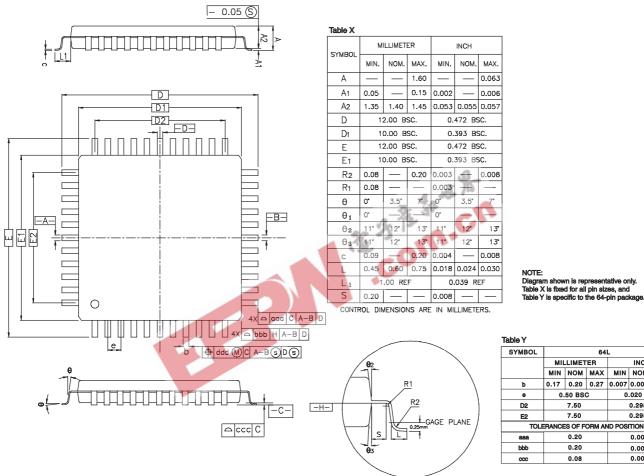
5. Typical Application Circuits


Note: Pins 45, 54, 55, and 57 are not connected internally. Any previous circuitry from the original GS1535 may remain connected in order to maintain footprint compatibility.

Note: All resistors in ohms and all capacitors in Farads.

Figure 5-1: GS1535A Typical Application Circuit

Note: Pins 45, 54, 55, and 57 are not connected internally. Any previous circuitry from the original GS9065 may remain connected in order to maintain footprint compatibility.



Note: All resistors in ohms and all capacitors in Farads.

Figure 5-2: GS9065A Typical Application Circuit

6. Package & Ordering Information

6.1 Package Dimensions

SYMBOL	64L					
	MILLIMETER				INCH	
	MIN	MIN NOM MAX			МОМ	MAX
b	0.17	0.20	0.27	0.007	0.008	0.011
0	0.	50 BS	c	0.020 BSC		
D2	7.50			0.295		
E2		7.50			0.295	
TOLE	RANCE	SOFF	ORM AN	ID POS	ITION	
aaa	0.20				0.008	
bbb	0.20				0.008	
ccc	0.08				0.003	

6.2 Packaging Data

Parameter	Value
Package Type	10mm x 10mm 64-pin LQFP
Package Drawing Reference	ASE 64-06-280-1384
Moisture Saturation Level	3
Junction to Case Thermal Resistance, $\theta_{j\text{-}c}$	18.1°C/W
Junction to Air Thermal Resistance, $\theta_{\text{j-a}}$ (at zero airflow)	47.8°C/W
Psi	1.1°C/W
Pb-free and RoHS Compliant	Yes

6.3 Ordering Information

nation		大海 · CN	
	Part Number	Package	Temperature Range
GS1535A	GS1535ACFUE3	Pb-free 64-pin LQFP	0°C to 70°C
GS9065A	GS9065ACFUE3	Pb-free 64-pin LQFP	0°C to 70°C

7. Revision History

Version	ECR	PCN	Date	Changes and/or Modifications
Α	133493	-	April 2004	New Document.
0	134398	-	September 2004	Convert to Preliminary Data Sheet. Updated pin descriptions. Updated Electrical Characteristics. Added Packaging Data section detailing package information. Corrected minor typing errors in pin description table and typical application circuits.
1	135364	-	February 2005	Corrected block diagrams and pin description table to reflect mute functionality of the device.
2	136782	- 3	M ay 2005	Removed all references to the Serial Clock Output. Updated all 'Green' references to 'RoHS Compliant'. Updated TTL input circuit and Standard Selection/Indication circuit diagrams. Corrected minor typing errors in electrical characteristics tables.
3	138505	37280	November 2005	Converted to Data Sheet. Revised maximum output swing to 2200 mV in AC Electrical Characteristics on page 10.

CAUTION

ELECTROSTATIC SENSITIVE DEVICES
DO NOT OPEN PACKAGES OR HANDLE
EXCEPT AT A STATIC-FREE WORKSTATION

DOCUMENT IDENTIFICATION

DATA SHEET

The product is in production. Gennum reserves the right to make changes to the product at any time without notice to improve reliability, function or design, in order to provide the best product possible.

GENNUM CORPORATION

Mailing Address: P.O. Box 489, Stn. A, Burlington, Ontario, Canada L7R 3Y3 Shipping Address: 970 Fraser Drive, Burlington, Ontario, Canada L7L 5P5 Tel. +1 (905) 632-2996 Fax. +1 (905) 632-5946

GENNUM JAPAN CORPORATION

Shinjuku Green Tower Building 27F, 6-14-1, Nishi Shinjuku, Shinjuku-ku, Tokyo, 160-0023 Japan Tel. +81 (03) 3349-5501, Fax. +81 (03) 3349-5505

GENNUM UK LIMITED

25 Long Garden Walk, Farnham, Surrey, England GU9 7HX Tel. +44 (0)1252 747 000 Fax +44 (0)1252 726 523

Gennum Corporation assumes no liability for any errors or omissions in this document, or for the use of the circuits or devices described herein. The sale of the circuit or device described herein does not imply any patent license, and Gennum makes no representation that the circuit or device is free from patent infringement.

GENNUM and the G logo are registered trademarks of Gennum Corporation.

© Copyright 2004 Gennum Corporation. All rights reserved. Printed in Canada. www.gennum.com