High-Speed Switching . . . 75 ns Max

Directly Interchangeable with Hewiett

UL Recognized . . . File Number E65085

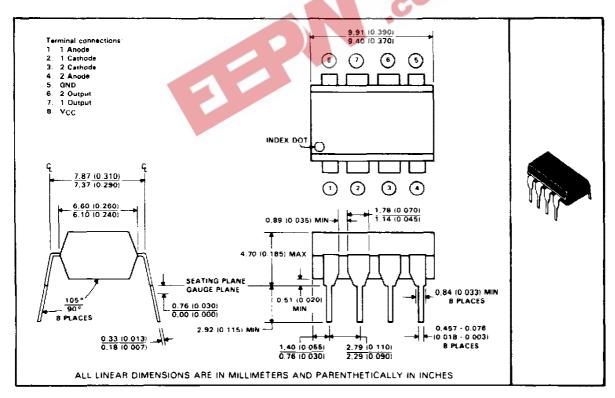
Packard HCPL2630

SOOS010 D2969, NOVEMBER 1986

- Gallium Arsenide Phosphide LED Optically Coupled to an Integrated Circuit Detector
- Compatible with TTL and LSTTL Inputs
- Low input Current Required for On-State Output . . .5 mA Max
- High-Voltage Electrical Insulation . . . 3000 V DC Min

description

The HCPL2630 is a dual optocoupler designed for use in high-speed digital interfacing applications that require high-voltage isolation between the input and output. Applications include line receivers, microprocessors or computer interface, and other control systems.

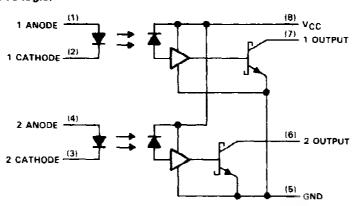

8

Each channel of the HCPL2630 optocoupler consists of a GaAsP light-emitting diode and an integrated light detector composed of a photodiode, a high-gain amplifier, and a Schottky-clamped open-collector output transistor. An input diode forward current of 5 milliamperes will switch the output transistor low, providing an on-state drive current of 13 milliamperes (eight 1.6-milliampere TTL loads).

The device is mounted in a standard 8-pin dual-in-line plastic package:

The HCPL2630 is characterized for operation over the temperature range of 0°C to 70°C.

mechanical data



TEXAS

INSTRUMENTS POST OFFICE BOX 655303 - DALLAS, TEXAS 75265

PRODUCTION DATA documents contain information surrout as of publication data. Products conform to specifications per the terms of Texas lestruments standard worranty. Production processing does not percessarily include testing of oil parameters. Copyright © 1986, Texas Instruments Incorporated

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

4
Supply voltage, VCC
Reverse input voltage
Dutput voltage
Peak forward input current, each channel (≤1 ms duration)30 m/
Average forward input current, each channel
Dutput current, each channel
Dutput power dissipation
Storage temperature range
Operating free-air temperature range
ead temperature 1.6 mm (1/16 inch) from case for 10 seconds

recommended operating conditions

		MIN	NOM	MAX	UNIT
Vcc	Output supply voltage (see Note 1)	4.5	5	5.5	V
IF(on)	Input forward current to turn output on	6.3		15	mΑ
IF(off)	Input forward current to turn output off	0		250	μA
ΊOL	Low-level (on-state) output current			13	mA
T _A	Operating free-air temperature	0		70	°C

NOTE 1: All voltage values are with respect to GND (pin 5).

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

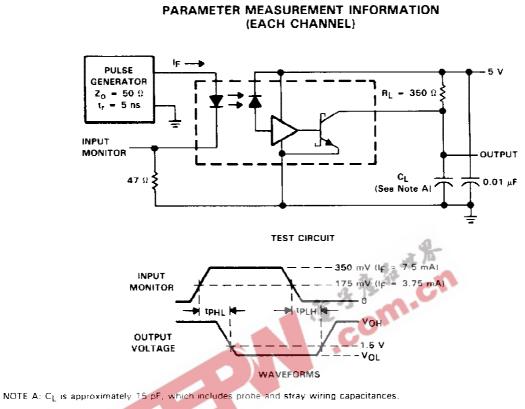
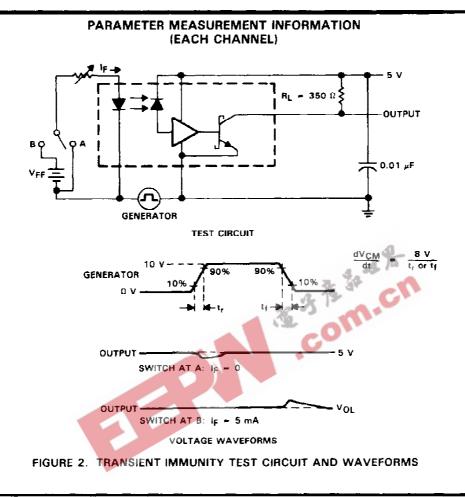
PARAMETER		TEST CONDITIONS		MIN	TYPT	MAX	UNIT
VF	Input forward voltage	lբ = 10 mA,	$T_A = 25 °C$		1.6	1.75	V
αVF	Temperature coefficient of forward voltage	I _F = 10 mA			- 1.8		mV/°C
VBR	Input reverse breakdown voltage	I _R = 10 μA,	T _A = 25°C	5	•		V
VOL	Low-level output voltage	$V_{CC} = 5.5 V,$ $I_{OL} = 13 mA$	IF = 5 mA		0.23	0.6	v
юн	High-level output current	$V_{CC} = 5.5 V,$ $I_F = 250 \mu A$	V _O = 5.5 V,			250	μΑ
ІССН	Supply current, high-level output	V _{CC} = 5.5 V,	lr = 0		20	30	mA
ICCL	Supply current, low-level output	V _{CC} = 5.5 V,	I _F = 10 mA		26	36	mA
l ₁₁	Input-input insulation leakage current	$V_{II} = 500 V,$ $T_A = 25 °C$ See Note 2			0.005		μΑ
110	input-output insulation leakage current	V _{IO} = 3000 V. T _A ≠ 25 °C. See Note 1		. g.	p-	1	μА
тц	Input-input resistance	V _{II} = 500 V, See Note 2	T _A = 25°C,		1011		Ω
10	input-output résistance	VIO = 500 V. See Note 1	T _A = 25°C.		1012		n
Ci	Input capacitance	Vp = 0.	= 1 MHz		60		pF
Cii	Input input capacitance	$\nabla_{\mathbf{F}} = 0,$	f = 1 MHz		0.25		pF
C _{io}	Input-output capacitance	f = 1 MHz. See Note 1	T <u>A</u> ≈ 25°C.		0.6		pF

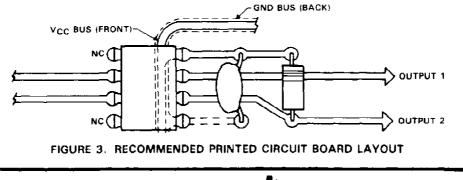
¹ All typical values are at V_{CC} = 5 V, $T_A = 25$ °C. NOTES 1. These parameters are measured between pins 1, 2, 3, and 4 shorted together and pins 5, 6, 7, and 8 shorted together. 2. These parameters are measured between pins 1 and 2 shorted together and pins 3 and 4 shorted together.

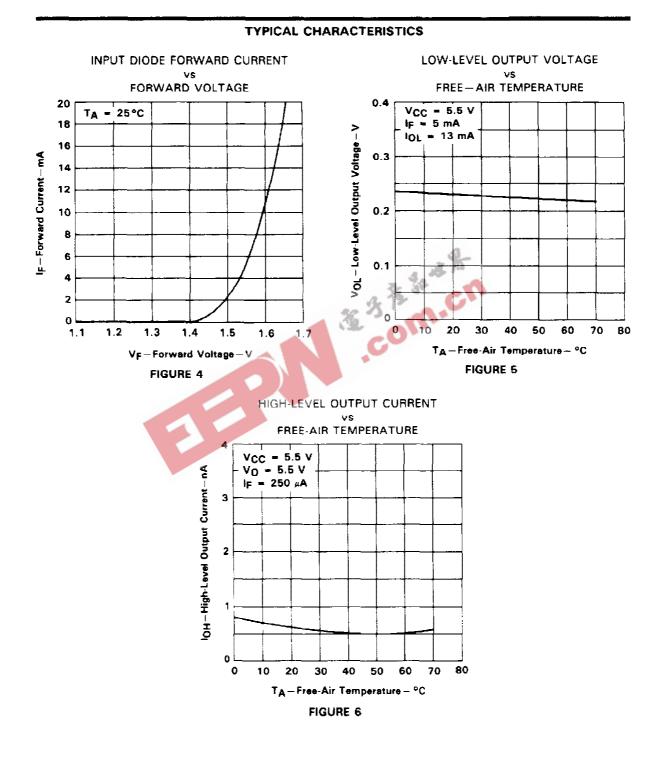
switching characteristics at V_{CC} = 5 V, T_A = $25 \,^{\circ}$ C

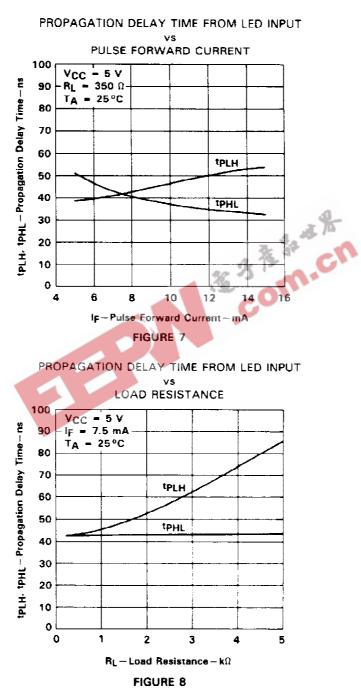
PARAMETER		TEST CONDITIONS		TYP	MAX	UNIT
τριμ	Propagation delay time, low-to-high-level output, from LED input	I _F = 7.5 mA, R _L = 350 Ω. C _L = 15 pF, See Figure 1		42	75	ns
^t PHL	Propagation delay time, high-to-low level output, from LED input	I _F = 7.5 mA, B _L = 350 Ω, C _L = 15 pF, See Figure 1		42	75	ns
t _r	Rise time	$I_F = 7.5 \text{ mA}, R_L = 350 \Omega, \\ C_L = 15 \text{ pF}$		20		ns
t _f	Fall time	$I_F = 7.5 \text{ mA}, R_L = 350 \Omega, \\ C_L = 15 \text{ pF}$		30		ns
dVCM dt (H	Common-mode input transient immunity, high-level output	$\Delta V_{CM} = 10 V$, IF = 0, R _L - 350 Ω , See Note 3 and Figure 2		50		V/µs
$\frac{dV_{CM}}{dt}$ (L)	Common-mode input transient immunity, low-level output	$\Delta V_{CM} = -10 \text{ V}. \text{ IF} = 5 \text{ mA},$ $R_L = 350 \Omega.$ See Note 3 and Figure 2		- 150		V/µs

NOTE 3: Common-mode input transient immunity, high-level output, is the maximum rate of rise of the common-mode input voltage that does not cause the output voltage to drop below 2 V. Common-mode input transient immunity, low-level output, is the maximum rate of fall of the common-mode input voltage that does not cause the output voltage to rise above 0.8 V.


FIGURE 1. TPLH AND TPHL FROM LED INPUT TEST CIRCUIT AND WAVEFORMS




TYPICAL APPLICATION INFORMATION

A ceramic capacitor (0.01 μ F to 0.1 μ F) should be connected between pins 8 and 5 to stabilize the highgain amplifier. The total lead length between the capacitor and the optocoupler should not exceed 20 mm (0.8 inches). Failure to provide a bypass capacitor may result in impaired switching characteristics.

TEXAS INSTRUMENTS POST OFFICE DOX 056303 - DALLAS TEXAS 73265

TYPICAL CHARACTERISTICS

TEXAS TEXAS TEXAS TEXAS 75266

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated