innov**ASIC**

FEATURES

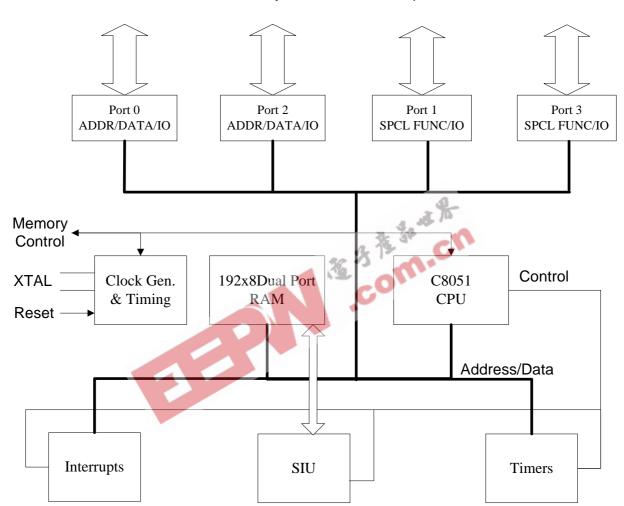
- Form, Fit, and Function Compatible with the Intel^a 8044/8344
- Packaging options available: 40 Pin Plastic Dual In-Line Package (PDIP). 44 Pin Plastic Leaded Chip Carrier (PLCC)
- **8-Bit Control Unit**
- 8-Bit Arithmetic-Logic Unit with 16-Bit multiplication and division
- 12 MHz clock
- Four 8-Bit Input / Output ports
- **Two 16-Bit Timer/Counters**
- Serial Interface Unit with SDLC/HDLC compatibility
- 2.4 Mbps maximum serial data rate
- **Two Level Priority Interrupt System**
- **5 Interrupt Sources**
- 192 Bytes of Read/Write Data Memory Space .com.cr
- 64kB External Data Memory Space
- 4kB Internal ROM (IA8044 only)

IA8044/IA8344 Variants

	4kB internal ROM with R0117 version 2.3 firmware, 192 byte internal RAM, 64kB external program and data space.
IA8344	192 byte internal RAM, 64kB external program and data space.

The IA8044/IA8344 is a "plug-and-play" drop-in replacement for the original IC. InnovASIC produces replacement ICs using its MILESTM, or Managed IC Lifetime Extension System, cloning technology. This technology produces replacement ICs far more complex than "emulation" while ensuring they are compatible with the original IC. MILES[™] captures the design of a clone so it can be produced even as silicon technology advances. MILES[™] also verifies the clone against the original IC so that even the "undocumented features" are duplicated. This data sheet documents all necessary engineering information about the IA8044/IA8344 including functional and I/O descriptions, electrical characteristics, and applicable timing.

1


Package Pinout

P1.0 🔶	(1)	IA8X44	(40)	VCC		4	ς.	Ņ	5	o, ,	; c	, o	5	P0.2	P0.3	
P1.1 ◀➡	(2)	40 Pin DIP	(39)	← P0.0 (AD0)		5	Ę	Ę	P1.1	- P1.0		- PO.0	- P0.1	PO	PG	
P1.2 🔶	• •		(38)	← ▶ P0.1 (AD1)		1	Ţ.	Ĵ.	Ţ	ţ		. I.	ţ	Ţ	ţ.	
P1.3 🛶			(37)	➡ P0.2 (AD2)	ſ	⁄ (9	(2)	(4)	(3)	5 (2)	(144)	6 (1)	(42)	(41)	(40)	
P1.4 🔶			(36)	➡ P0.3 (AD3)	P1.5 🖛	(7)	-	-	Ŭ		- 3	5 3	7	<u>7</u>		9) 🔸 P0.4
P1.5 🔶			(35)	← ► P0.4 (AD4)	P1.6 🗲	(8)										8) + P0.5
(RTS) P1.6			(34)	➡ P0.5 (AD5)	P1.7	(9)				IA8X	11					7) ←→ P0.6
(CTS) P1.7 🔸				← ► P0.6 (AD6)	RST/VPD	(10)										6) ←→ P0.7
RST —			(32)	← P0.7 (AD7)	P3.0 🔶	(11)			4	44 Pi	n LC	C			(3	5) 🖛 EA
(RXD) P3.0	• •		(31)	■ EA	N.C. 🔶	(12)									(3	4) N.C.
(TXD) P3.1	• •		(30)	ALE	P3.1 🔶	(13)									(3	3) ALE
(INT0) P3.2			(29)	→ PSEN	P3.2 🛶	(14)									(3:	2) PSEN
(INT1) P3.3 🛶			(28)	➡ P2.7 (A15)	P3.3 🔶	(15)									(3	1) ← P2.7
(T0) P3.4 🔶	• •		(27)	➡ P2.6 (A14)	P3.4 🛶	(16)									(3	0) ←→ P2.6
(SCLK/T1) P3.5	• •		(26)	← P2.5 (A13)	P3.5 🔶	(17)						3			(2	9) 🖚 P2.5
(WR) P3.6 🔶			(20)	➡ P2.4 (A12)		(18)	19)	(20)	(21)	(22)	(23)	(24)	(26)	27)	(28)	
(RD) P3.7 🛶			(24)	← P2.3 (A11)	l	ت •	3 3	0	<u></u>	2			10	<u></u>	<u>N</u>	
XTAL2 🛶				← ► P2.2 (A10)		Ŧ	÷.	-5	X					ŧ	ŧ	
XTAL1 —				← P2.1 (A9)		P3.6	P3.7	XTAL2	XTAL1	VSS	сі Z	P2.0	P2.2	P2.3	P2.4	
VSS —	(20)		(21)	← ► P2.0 (A8)	94	e 7	5	۲.	×	Á.	2			_	-	
						2	-	-								

DESCRIPTION

The IA8044/IA8344 is a form, fit and function compatible part to the Intel® 8X44 SDLC communications controller. The IA8044/IA8344 is a Fast Single-Chip 8-Bit Microcontroller with an integrated SDLC/HDLC serial interface controller. The IA8044/IA8344 is a fully functional 8-Bit Embedded Controller that executes all ASM51 instructions and has the same instruction set as the Intel 80C51. The IA8044/IA8344 can access the instructions from two types of program memory, serves software and hardware interrupts, provides an interface for serial communications and a timer system. The IA8044/IA8344 is fully compatible with the Intel® 8X44 series. The functional block diagram is shown below.

Functional Block Diagram

I/O for Memory, SIU, DMA, Interrupts, Timers

I/O Characteristics

The table below describes the I/O characteristics for each signal on the IC. The signal names correspond to the signal names on the pinout diagrams provided. The table below provides the I/O description of the IA8044 and the IA8344.

Name	Туре	Description
RST	I	Reset. This pin when held high for two machine cycles while
		the oscillator is running will cause the chip to reset.
ALE	0	Address Latch Enable. Used to latch the address on the falling
		edge for external memory accesses.
PSEN	0	Program Store Enable. When low acts as an output enable for
		external program memory.
EA	Ι	external program memory. External Access. When held low EA will cause the
		IA8044/IA8344 to fetch instructions from external memory.
P0.7 – P0.0	I/O	Port 0. 8 bit I/O port and low order multiplexed address/data
		byte for external accesses.
P1.7 – P1.0	I/O	Port 1. 8-bit I/O port. Two bits have alternate functions, P1.6
		(RTS) and P1.7 (CTS).
P2.7 – P2.0	I/O	Port 2. 8-bit I/O port. It also functions as the high order
		address byte during external accesses.
P3.7 – P3.0	I/O	Port 3. 8-bit I/O port. Port 3 bits also have alternate functions
		as described below.
		P3.0 – RXD. Receive data input for SIU or direction control
		for P3.1 dependent upon datalink configuration.
		P3.1 – TXD. Transmit data output for SIU or data
		input/output dependent upon datalink configuration. Also
		enables diagnostic mode when cleared.
		P3.2 – INT0. Interrupt 0 input or gate control input for counter
		0. D2 2 INT1 Interment 1 input on gets control input for counter
		P3.3 – INT1. Interrupt 1 input or gate control input for counter 1.
		P3.4 - T0. Input to counter 0.
		P3.5 – SCLK/T1. SCLK input to SIU or input to counter 1.
		P3.6 – WR. External memory write signal.
		P3.7 – RD. External memory read signal.
XTAL1	Ι	Crystal Input 1. Connect to VSS when external clock is used on
	-	XTAL2. May be connected to a crystal (with XTAL2), or may
		be driven directly with a clock source (XTAL2 not connected).
XTAL2	0	Crystal Input 2. May be connected to a crystal (with XTAL1),
-	_	or may be driven directly with an inverted clock source (XTAL1
		tied to ground).
VSS	Р	Ground.

Memory Organization

Program Memory

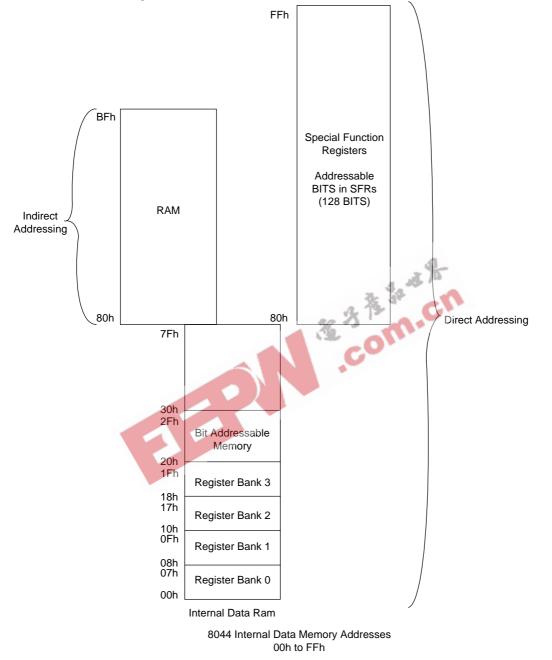
Program Memory includes interrupt and Reset vectors. The interrupt vectors are spaced at 8byte intervals, starting from 0003H for External Interrupt 0.

Reset Vectors

Location	Service
0003H	External Interrupt 0
000BH	Timer 0 overflow
0013H	External Interrupt 1
001BH	Timer 1 overflow
0023H	SIU Interrupt

These locations may be used for program code, if the corresponding interrupts are not used (disabled). The Program Memory space is 64K, from 0000H to FFFFH. The lowest 4K of program code (0000H to 0FFFH) can be fetched from external or internal Program Memory. This selection is made by strapping pin 'EA' (External Address) to GND or VCC. If during reset, 'EA' is held low, all the program code is fetched from external memory. If, during reset, 'EA' is held high, the lowest 4K of program code (0000H to 0FFFH) is fetched from internal memory (ROM). Program memory addresses above 4K (0FFFH) will cause the program code to be fetched from external memory regardless of the setting of 'EA'.

Data Memory


External Data Memory

The IA8044/IA8344 Microcontroller core incorporates the Harvard architecture, with separate code and data spaces. The code from external memory is fetched by 'psen' strobe, while data is read from RAM by bit 7 of P3 (read strobe) and written to RAM by bit 6 of P3 (write strobe). The External Data Memory space is active only by addressing through use of the MOVX instruction and the 16-bit Data Pointer Register (DPTR). A smaller subset of external data memory (8 bit addressing) may be accessed by using the MOVX instruction with register indexed addressing.

Internal Data Memory

The Internal Data Memory address is always 1 byte wide. The memory space is 192 bytes large (00H to BFH), and can be accessed by either direct or indirect addressing. The Special Function Registers occupy the upper 128 bytes. This SFR area is available only by direct addressing. Internal memory that overlaps the SFR address space is only accessible by indirect addressing.

Internal Memory

Bit Addressable Memory

Both the internal RAM and the Special Function Registers have locations that are bit addressable in addition to the byte addressable locations.

Byte Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit O	Register
F0h	F7h	F6h	F5h	F4h	F3h	F2h	F1h	F0h	В
E0h	E7h	E6h	E5h	E4h	E3h	E2h	E1h	E0h	ACC
D8h	DFh	DEh	DDh	DCh	DBh	DAh	D9h	D8h	NSNR
D0h	D7h	D6h	D5h	D4h	D3h	D2h	D1h	D0h	PSW
C8h	CFh	CEh	CDh	CCh	CBh	CAh	C9h	C8h	STS
B8h	-	-	-	BCh	BBh	BAh	B9h	B8h	IP
B0h	B7h	B6h	B5h	B4h	B3h	B2h	B1h	B0h	P3
A8h	AFh	-	-	ACh	ABh	AAh	A9h	A8h	IE
A0h	A7h	A6h	A5h	A4h	A3h	A2h	A1h	A0h	P2
90h	97h	96h	95h	94h	93h	92h	91h	90h	P1
88h	8Fh	8Eh	8Dh	8Ch	8Bh	8Ah	8 9h	88h	TCON
80h	87h	86h	85h	84h	83h	82h	🕨 81h 🚽	80h	P0

SFR Bit Addressable Locations

Internal RAM Bit Addressable Locations 3 3

Byte Address	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
30h-BFh			Upper	: Internal	Ram loc	ations		
2Fh	7Fh	7Eh	7Dh	7Ch	7Bh	7Ah	79h	78h
2Eh	77h	76h	75h	74h	73h	72h	71h	70h
2Dh	6Fh	6Eh	6Dh	6Ch	6Bh	6Ah	69h	68h
2Ch	67h	66h	65h	64h	63h	62h	61h	60h
2Bh	5Fh	5Eh	5Dh	5Ch	5Bh	5Ah	59h	58h
2Ah	57h	56h	55h	54h	53h	52h	51h	50h
29h	4Fh	4Eh	4Dh	4Ch	4Bh	4Ah	49h	48h
28h	47h	46h	45h	44h	43h	42h	41h	40h
27h	3Fh	3Eh	3Dh	3Ch	3Bh	3Ah	39h	38h
26h	37h	36h	35h	34h	33h	32h	31h	30h
25h	2Fh	2Eh	2Dh	2Ch	2Bh	2Ah	29h	28h
24h	27h	26h	25h	24h	23h	22h	21h	20h
23h	1Fh	1Eh	1Dh	1Ch	1Bh	1Ah	19h	18h
22h	17h	16h	15h	14h	13h	12h	11h	10h
21h	0Fh	0Eh	0Dh	0Ch	0Bh	0Ah	09h	08h
20h	07h	06h	05h	04h	03h	02h	01h	00h
18h-1Fh				Register	Bank 3			
10h-17h				Register	Bank 2			
08h-0Fh				Register	Bank 1			
00h-07h				Register	Bank 0			

Instruction Set

The 8X44 architecture and instruction set are identical to the 8051's. The following tables give a survey of the instruction set of the IA8044/IA8344 Microcontroller core.

Arithmetic Operations

Mnemonic	Description	Byte	Cycle
ADD A,Rn	Add register to accumulator	1	1
ADD A, direct	Add direct byte to accumulator	2	1
ADD A,@Ri	Add indirect RAM to accumulator	1	1
ADD A,#data	Add immediate data to accumulator	2	1
ADDC A,Rn	Add register to accumulator with carry flag	1	1
ADDC A, direct	Add direct byte to A with carry flag	2	1
ADDC A,@Ri	Add indirect RAM to A with carry flag	1	1
ADDC A,#data	Add immediate data to A with carry flag	2	1
SUBB A,Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	1
SUBB A,@Ri	Subtract indirect RAM from A with borrow	1	1
SUBB A,#data	Subtract immediate data from A with borrow	2	1
INC A	Increment accumulator	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	1
INC @ Ri	Increment indirect RAM	1	1
DEC A	Decrement accumulator	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	1
DEC @Ri	Decrement indirect RAM	1	1
INC DPTR	Increment data pointer	1	2
MUL A,B	Multiply A and B	1	4
DIV A,B	Divide A by B	1	4
DA A	Decimal adjust accumulator	1	1

Logic Operations

Mnemonic	Description	Byte	Cycle
ANL A,Rn	AND register to accumulator	1	1
ANL A, direct	AND direct byte to accumulator	2	1
ANL A,@Ri	AND indirect RAM to accumulator	1	1
ANL A,#data	AND immediate data to accumulator	2	1
ANL direct,A	AND accumulator to direct byte	2	1
ANL direct,#data	AND immediate data to direct byte	3	2
ORL A,Rn	OR register to accumulator	1	1
ORL A, direct	OR direct byte to accumulator	2	1
ORL A,@Ri	OR indirect RAM to accumulator	1	1
ORL A,#data	OR immediate data to accumulator	2	1
ORL direct,A	OR accumulator to direct byte	2	1
ORL direct,#data	OR immediate data to direct byte	3	2
XRL A,Rn	Exclusive OR register to accumulator	1	1
XRL A, direct	Exclusive OR direct byte to accumulator	2	1
XRL A,@Ri	Exclusive OR indirect RAM to accumulator	1	1
XRL A,#data	Exclusive OR immediate data to accumulator	2	1
XRL direct,A	Exclusive OR accumulator to direct byte	2	1
XRL direct,#data	Exclusive OR immediate data to direct byte	3	2
CLR A	Clear accumulator	1	1
CPL A	Complement accumulator	1	1
RL A	Rotate accumulator left	1	1
RLC A	Rotate accumulator left through carry	1	1
RR A	Rotate accumulator right	1	1
RRC A	Rotate accumulator right through carry	1	1
SWAP A	Swap nibbles within the accumulator	1	1

Data Transfer

Mnemonic	Description	Byte	Cycle
MOV A,Rn	Move register to accumulator	1	1
MOV A, direct	Move direct byte to accumulator	2	1
MOV A,@Ri	Move indirect RAM to accumulator	1	1
MOV A,#data	Move immediate data to accumulator	2	1
MOV Rn,A	Move accumulator to register	1	1
MOV Rn,direct	Move direct byte to register	2	2
MOV Rn,#data	Move immediate data to register	2	1
MOV direct,A	Move accumulator to direct byte	2	1
MOV direct,Rn	Move register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	2
MOV direct,@Ri	Move indirect RAM to direct byte	2	2
MOV direct,#data	Move immediate data to direct byte 🔒 🦧 🏴	3	2
MOV @Ri,A	Move accumulator to indirect RAM	1	1
MOV @Ri,direct	Move direct byte to indirect RAM 🔽 👝 🏏	2	2
MOV @ Ri, #data	Move immediate data to indirect RAM	2	1
MOV DPTR, #data16	Load data pointer with a 16-bit constant	3	2
	Move code byte relative to DPTR to accumulator	1	2
MOVC A,@A + PC	Move code byte relative to PC to accumulator	1	2
MOVX A,@Ri	Move external RAM (8-bit addr.) to A	1	2
MOVX A,@DPTR	Move external RAM (16-bit addr.) to A	1	2
MOVX @Ri,A	Move A to external RAM (8-bit addr.)	1	2
MOVX @DPTR,A	Move A to external RAM (16-bit addr.)	1	2
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A,Rn	Exchange register with accumulator	1	1
XCH A,direct	Exchange direct byte with accumulator	2	1
XCH A,@Ri	Exchange indirect RAM with accumulator	1	1
XCHD X,@ Ri	Exchange low-order nibble indir. RAM with A	1	1

Boolean Manipulation

Mnemonic	Description	Byte	Cycle
CLR C	Clear carry flag	1	1
CLR bit	Clear direct bit	2	1
SETB C	Set carry flag	1	1
SETB bit	Set direct bit	2	1
CPL C	Complement carry flag	1	1
CPL bit	Complement direct bit	2	1
ANL C,bit	AND direct bit to carry flag	2	2
ANL C,bit	AND complement of direct bit to carry	2	2
ORL C,bit	OR direct bit to carry flag	2	2
ORL C,bit	OR complement of direct bit to carry	2	2
MOV C,bit	Move direct bit to carry flag	2	1
MOV bit,C	Move carry flag to direct bit	2	2

Program Branches

MOV DIT,C	Move carry flag to direct bit	2	2
Program Branches			
Mnemonic	Description	Byte	Cycle
ACALL addr11	Absolute subroutine call	2	2
LCALL addr16	Long subroutine call	3	2
RET Return 🧹	from subroutine	1	2
RETI Return	from interrupt	1	2
AJMP addr11	Absolute jump	2	2
LJMP addr16	Long jump	3	2
SJMP rel	Short jump (relative addr.)	2	2
JMP @A + DPTR	Jump indirect relative to the DPTR	1	2
JZ rel	Jump if accumulator is zero	2	2
JNZ rel	Jump if accumulator is not zero	2	2
JC rel	Jump if carry flag is set	2	2
JNC rel	Jump if carry flag is not set	2	2
JB bit,rel	Jump if direct bit is set	3	2
JNB bit,rel	Jump if direct bit is not set	3	2
JBC bit,rel	Jump if direct bit is set and clear bit	3	2
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	2
CJNE A,#data,rel	Compare immediate to A and jump if not equal	3	2
CJNE Rn,#data rel	Compare immed. to reg. and jump if not equal	3	2
CJNE @Ri,#data,rel	Compare immed. to ind. and jump if not equal	3	2
DJNZ Rn,rel	Decrement register and jump if not zero	2	2
DJNZ direct,rel	Decrement direct byte and jump if not zero	3	2
NOP	No operation	1	1

Special Function Registers

Symbol **Register Description** Byte **Bit Addresses (Hex)** Address(Hex) (MSB - LSB) ACC Accumulator E0h E7h – E0h В **B** register F0h F7h – F0h **Program Status Word** D7h – D0h **PSW** D0h SP Stack Pointer 81h DPH Data Pointer High Byte 82h _ DPL Data Pointer Low Byte 83h _ P0 Port 0 80h 87h - 80h Port 1 90h 97h – 90h P1 P2 Port 2 A0h A7h – A0h B7h – B0h P3 Port 3 B0h IP **Interrupt Priority** B8h BCh – B8h 4 IE AFh,ACh – A8h **Interrupt Enable** A8h TMOD Timer/Counter Mode 89h TCON Timer/Counter Control 88h 8Fh – 88h TH0 Timer/Counter 0 high byte 8Ch Timer/Counter 0 low byte TL0 8Ah _ TH1 Timer/Counter 1 high byte 8Dh _ TL1 Timer/Counter 1 low byte 8Bh _ SMD Serial Mode C9h STS SIU Status and Command C8h CFh – C8h NSNR SIU Send/Receive Count DFh – D8h D8h SIU Station Address STAD CEh -TBS **Transmit Buffer Start Address** DCh _ TBL Transmit Buffer Length DBh _ TCB Transmit Control Byte DAh _ RBS **Receive Buffer Start Address** CCh -RBL **Receive Buffer Length** CBh -RFL **Receive Field Length** CDh _ RCB **Receive Control Byte** CAh _ DMA CNT CFh **DMA** Count _ FIFO FIFO contents (3 bytes) DF.DE.DDh _ SIUST SIU State Counter D9h _

The IA8044/IA8344 contains the following special function registers:

Ports

Ports P0, P1, P2 and P3 are Special Function Registers. The contents of the SFR can be observed on corresponding pins on the chip. Writing a '1' to any of the ports causes the corresponding pin to be at high level (VCC), and writing a '0' causes the corresponding pin to be held at low level (GND).

All four ports on the chip are bi-directional. Each of them consists of a Latch (SFR P0 to P3), an output driver, and an input buffer, so the CPU can output or read data through any of these ports if they are not used for alternate purposes.

Ports P0, P1, P2 and P3 can perform some alternate functions. Ports P0 and P2 are used to access external memory. In this case, port 'p0' outputs the multiplexed lower 8 bits of address with 'ale' strobe high and then reads/writes 8 bits of data. Port P2 outputs the higher 8 bits of address. Keeping 'ea' pin low (tied to GND) activates this alternate function for ports P0 and P2.

Port P3 and P1 can perform some alternate functions. The pins of Port P3 are multifunctional. They can perform additional functions as described below.

Pin P3.0	Symbol RxD, I/O	Function In point-to-point or multipoint configurations (SMD.3 = 0) this pin is I/O and signals the direction of data flow on DATA (P3.1). In loop mode (SMD.3 = 1) and diagnostic mode this pin is RxD, Receive Data input.
P3.1	TxD, DATA	In point to point or multipoint configurations (SMD.3 = 0) this pin is DATA and is the transmit/receive data pin. In loop mode (SMD.3 = 1) this pin is the transmit data, TxD, pin. Writing a '0' to this port buffer bit enables the diagnostic mode.
P3.2	INT0	External interrupt 0 input. Also gate control input for counter 0.
P3.3	INT1	External interrupt 1 input. Also gate control input for counter 1.
P3.4	Τ0	Timer/Counter 0 external input. Setting the appropriate bits in the Special Function Registers TCON and TMOD activates this function.
P3.5	T1, SCLK	Timer/Counter 1 external input. Setting the appropriate bits in the Special Function Registers TCON and TMOD activates this function Can also function as the external clock source for the SIU.
P3.6	WR	External Data Memory write strobe, active LOW. This function is activated by a CPU write access to External Data Memory (i.e. MOVX @DPTR, A).

P3.7	RD	External Data Memory read strobe, active LOW. This function is activated by a CPU read access from External Data Memory (i.e. MOVX A, @DPTR).
P1.6	RTS	Request To Send output, active low.
P1.7	CTS	Clear To Send input, active low.

Port Registers

Port 0 (P0):

General purpose, 8 bit, I/O port and multiplexed low order address and data bus with open-drain output buffers.

P0 Bit: 7	6	5	4	3	1	0
P0.7	P0.6	P0.5	P0.4	P0.3 P0.2	P0.1	P0.0
				3 om.		

Port 1 (P1):

General purpose, 8 bit, I/O port with pullups and auxiliary functions.

P1							
Bit: 7	6	5	4	3	2	1	0
RTS/P1.7	CTS/P1.6	6 P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
P1.0	-						
P1.1	-						
P1.2	-						
P1.3	-						
P1.4	-						
P1.5	-						
P1.6	RTS	Request To	Send outpu	ıt.			
P1.7	CTS	Clear To Ser	nd input.				

Port 2 (P2):

General purpose, 8 bit, I/O port with pullups and high order address bus.

P2							
Bit: 7	6	5	4	3	2	1	0
P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0

www.innovasic.com Customer Support: 1-888-824-4184

<u>Port 3 (P3):</u>

General purpose, 8-bit I/O port with pullups and auxiliary functions. Bits on this port also functions as the SIU data transmit/receive I/O, external interrupt inputs, timer inputs and the read and write strobes for external memory accesses.

P3							
Bit: 7	6	5	4	3	2	1	0
RD	WR	T1	T0	INT1	INT0	TxD	RxD
P3.0	RxD		input pin.				
P3.1	TxD		output pin.				
P3.2	INT0	Exter	nal interrupt	0.			
P3.3	INT1	Exter	nal interrupt	1.			
P3.4	T0	Time	r/Counter 0 e	external input			
P3.5	T1	Time	r/Counter 1 e	external input	•		
P3.6	WR	Exter	nal Data Mer	nory write str	obe, active L	OW.	
P3.7	RD	Exter	nal Data Mer	nory read stro	be, active LO	OW.	
		1		nory read stro	m.cn		

Timers/Counters

Timers 0 and 1

The IA8X44 has two 16-bit timer/counter registers: Timer 0 and Timer 1. Both can be configured for counter or timer operations. In timer mode, the register is incremented every machine cycle, which means that it counts up after every 12 oscillator periods. In counter mode, the register is incremented when the falling edge is observed at the corresponding input pin T0 or T1. Since it takes 2 machine cycles to recognize a 1-to-0 event, the maximum input count rate is 1/24 of the oscillator frequency. There are no restrictions on the duty cycle, however to ensure proper recognition of 0 or 1 state, an input should be stable for at least 1 machine cycle (12 clock periods).

Four operating modes can be selected for Timer 0 and Timer 1. Two Special Function Registers (TMOD and TCON) are used to select the appropriate mode.

Mode 0

In mode 0 the timers operate as an 8-bit timer (TH0/1) with a divide by 32 bit prescalar (TL0/1). Mode 0 uses all 8 bits of TH0/1 and the lower 5 bits of TL0/1. The upper 3 bits of TL0/1 are unknowns. Setting TR0/1 does not reset the registers TH0/1 and TL0/1. As the timer rolls over from all 1's to all 0's it will set the interrupt flag TF0/1.

Mode 1

Mode 1 is the same as mode 0 except that all 8 bits of TL0/1 are used instead of just the lower 5 bits.

Mode 2

Mode 2 configures TL0/1 as an 8-bit counter with automatic reload from the contents of TH0/1. Overflow of TL0/1 causes the interrupt TF0/1 to be set and the reload to occur. The contents of TH0/1 are not affected by the reload.

Mode 3

Mode 3 creates two separate 8 bit counters from TL0 and TH0. TL0 uses the timer 0 mode bits from TMOD, TMOD .0 through TMOD.3. TH0 is a timer only (not a counter) and uses timer 1's control bits, TR1 and TF1 for operation. Timer 1 can still be used if an interrupt is not required by switching it in and out of its own mode 3. With TMOD.4 and TMOD.5 both high timer 1 will stop and hold its count.

Timer Mode (TMOD):

The Timer Mode register contains bits that select the mode that the timers are to be operated in. The lower nibble controls timer 0 and the upper nibble controls timer 1.

TMOD Bit: 7	6	5	4	3	2	1	0
GATE	C/T	M1	M0	GATE	C/T	M1	M0
TMOD.0	TMOD.0 M0 Timer 0 mode selector bit.						
Copyright ã 20	03		ENG2	10010112-00			www.innovasic.com
innovASIC		solescenceä	Page	e 16 of 49			Customer Support: 1-888-824-4184

1-888-824-4184

IA8044/IA8344 SDLC COMMUNICATIONS CONTROLLER

TMOD.1	M1	Timer 0 mode selector bit.
TMOD.2	C/T	C/T Selects Timer0 or Counter0 operation. When set to 1, the Counter operation is performed, when cleared to 0, the register will function as a Timer.
TMOD.3	GATE	If set, enables external gate control for counter/timer0 (pin INT0/ for Counter 0). When INT0/ is high, and TR0 bit is
		set (see TCON register), the counter is incremented every
		falling edge on T0 input pin.
TMOD.4	M0	Timer 1 mode selector bit.
TMOD.5	M1	Timer 1 mode selector bit.
TMOD.6	C/T	C/T Selects Timer1 or Counter1 operation. When set to 1,
		the Counter operation is performed, when cleared to 0, the
		register will function as a Timer.
TMOD.7	GATE	If set, enables external gate control for counter/timer1 (pin
		INT1/ for Counter 1). When INT1/ is high, and TR1 bit is
		set (see TCON register), the counter is incremented every
		falling edge on T1 input pin

Time	er Mo	de Se	lect Bits 🛛 🗸 👫 🧭
M1	M0	Op	erating Mode
0	0	0	13 bit timer
0	1	1	16 bit timer/counter
1	0	2	8 bit auto-reload timer/counter
1	1	3	Timer0 – TL0 is a standard 8-bit timer/counter
			controlled by timer 0 control bits. TH0 is an 8-bit
			timer function only, controlled by timer 1 control bits.
1	1	3	Timer/counter1 stopped and holds its count. Can be
			used to start/stop timer 1 when timer 0 is in mode 3.

Timer Control (TCON):

L

_The End of Obsolescenceä

The Timer Control register provides control bits that start and stop the counters. It also contains bits to select the type of external interrupt desired, edge or level. Additionally TCON contains status bits showing when a timer overflows and when an interrupt edge has been detected.

TCON Bit: 7	6	5	4	3	2	1	0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0
TCON.0		IT0	1) type contro in to cause i	ol bit. Selects nterrupt.	falling edge	or low level
TCON.1		IE0	Interrupt () edge flag. S	Set by hardwa		lling edge on
TCON.2	:	IT1	external pin INT1/ is observed. Cleared when interrupt is processed. Interrupt 1 type control bit. Selects falling edge or low level on input pin to cause interrupt.				
Copyright ã 20 <u>innov</u> ASIC	003		ENG21	0010112-00			www.innovasic.com Customer Support:

Page 17 of 49

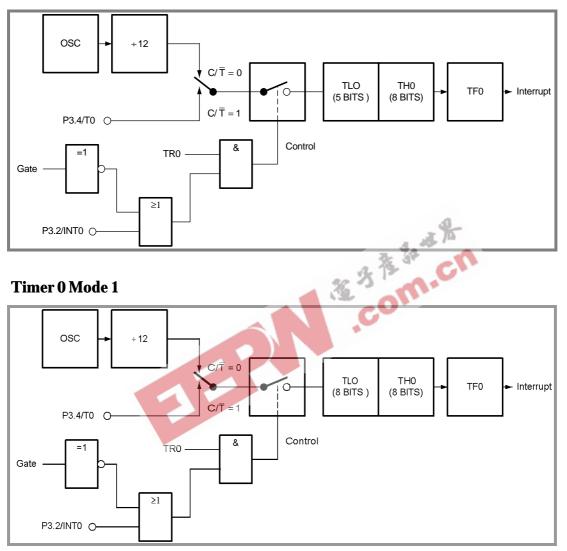
TCON.3	IE1	Interrupt 1 edge flag. Set by hardware, when falling edge on external pin INT1/ is observed Cleared when interrupt is processed.
TCON.4	TR0	Timer 0 Run control bit. If cleared, Timer 0 stops.
TCON.5	TF0	Timer 0 overflow flag set by hardware when Timer 0 overflows. This flag should be cleared by software.
TCON.6	TR1	Timer 1 Run control bit. If cleared, Timer 1 stops. In mode 3 this bit controls TH0.
TCON.7	TF1	Timer 1 overflow flag set by hardware when Timer 1 overflows. This flag should be cleared by software In mode 3 this bit is controlled by TH0.

Timer 0 High byte (TH0): High order byte of timer/counter0.

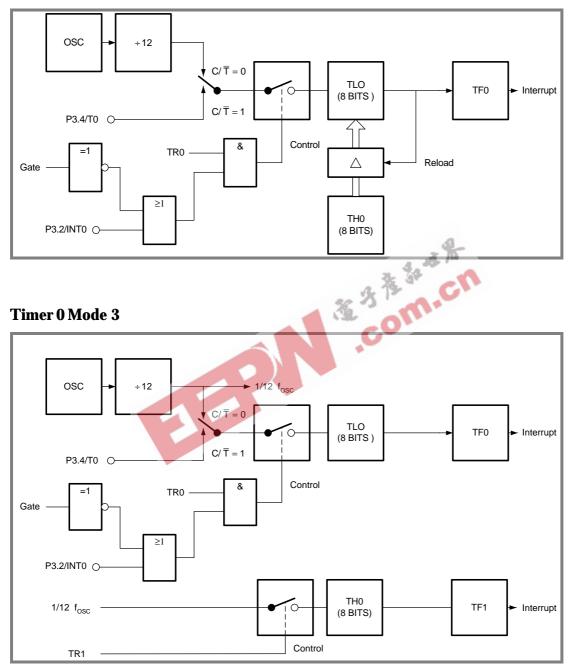
TH0 Bit: 7	6	5	4	3	2 2	1	0
TH0.7	TH0.6	TH0.5	TH0.4	TH0.3	TH0.2	TH0.1	TH0.0
	L ow byte (byte of timer 6			3	2	1	0
TL0.7	TL0.6	TL0.5	TL0.4	TL0.3	TL0.2	TL0.1	TL0.0

Timer 1 High byte (TH1):

High order byte of timer/counter1.


TH1							
Bit: 7	6	5	4	3	2	1	0
TH1.7	TH1.6	TH1.5	TH1.4	TH1.3	TH1.2	TH1.1	TH1.0

Timer 1 Low byte (TL1): Low order byte of timer/counter1.


TL1							
Bit: 7	6	5	4	3	2	1	0
TL1.7	TL1.6	TL1.5	TL1.4	TL1.3	TL1.2	TL1.1	TL1.0

<u>Timers/Counters Configuration</u>

Timer 0 Mode 0

Timer 0 Mode 2

Reset

A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods) while the oscillator is running. The CPU responds by generating an internal reset, which is executed during the second cycle in which RST is high.

The internal reset sequence affects all SFRs as shown below. The internal reset sequence does not affect the contents of internal RAM.

Register	Reset value
PC	0000H
ACC	0000000B
В	0000000B
PSW	0000000B
SP	00000111B
DPTR	0000H
P0 – P3	11111111B
IP	XXX00000B
IE	0XX00000B
TMOD	0000000B
TCON	0000000B
TH0	0000000B
TL0	0000000B
TH1	0000000B
TL1	00000000B
SMD	00000000B
STS	00000000B
NSNR	0000000B
STAD	XXXXXXXXB
TBS	XXXXXXXXB
TBL	XXXXXXXXB
ТСВ	XXXXXXXXB
RBS	XXXXXXXXB
RBL	XXXXXXXXB
RFL	XXXXXXXXB
RCB	XXXXXXXXB
DMA CNT	0000000B
FIFO1	00000000B
FIFO2	00000000B
FIFO3	0000000B
SIUST	00000001B

Reset Values

Copyright ã 2003
<u>innovASIC</u>
 The End of Obsolescenceä

General CPU Registers Accumulator (ACC):

ACC is the Accumulator register. Most instructions use the accumulator to hold the operand. The mnemonics for accumulator-specific instructions refer to accumulator as A, not ACC.

ACC							
Bit: 7	6	5	4	3	2	1	0
ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0

<u>B register (B):</u>

The B register is used during multiply and divide instructions. It can also be used as a scratch-pad register to hold temporary data.

B Bit: 7	6	5	4	3 3 2 2 1	1	0
B.7	B.6	B.5	B.4	B.3 B.2	B.1	B.0
Duogunau	Status Wa			COL		

Program Status Word (PSW):

Contains CPU status flags, register select bits and user flags.

PSW									
Bit: 7	6	5	4 3	2	1	0			
СҮ	AC	F0 RS1	RS0	OV	-	Р			
PSW.0	Р		ffected by hardwa s in the Accumula			number			
PSW.1	-	User defined		, I	5				
PSW.2	OV	Overflow fla	lg.						
PSW.3	RS0	Register ban	k select control bi	t 0, used to se	elect working	,			
PSW.4	RS1	register banl Register ban bank.	x. k select control bi	t 1, used to se	elect working	register			
PSW.5	F0	General pur	pose Flag 0 availal	ble for user.					
PSW.6	AC	Auxiliary Carry flag for carry out of or into bit 3.							
PSW.7	CY		r carry out of or in						

The state of bits RS1, RS0 selects the working registers bank as follows:

RS1/0	Bank selected location
00	Bank 0 (00H – 07H)
01	Bank 1 (08H – 0FH)
10	Bank 2 (10H – 17H)
11	Bank 3 (18H – 1FH)

Stack Pointer (SP):

The Stack Pointer is a 1-byte register initialized to 07H after reset. This register is incremented before PUSH and CALL instructions, causing the stack to begin at location 08H. The stack pointer points to a location in internal RAM.

SP Bit: 7	6	5	4	3	2	1	0
SP.7	SP.6	SP.5	SP.4	SP.3	SP.2	SP.1	SP.0
Data Poin				逐步	DPL. and the h		

Data Pointer (DPTR):

The Data Pointer (DPTR) is 2 bytes wide. The lower part is DPL, and the highest is DPH. It can be loaded as 2 byte register (MOV DPTR,#data16) or as two registers (ea. MOV DPL,#data8). It is generally used to access external code or data space (ea. MOVC A,@A+DPTR or MOV A,@DPTR respectively).

DPH							
Bit: 7	6	5	4	3	2	1	0
DPH.7	DPH.6	DPH.5	DPH.4	DPH.3	DPH.2	DPH.1	DPH.0

DPL							
Bit: 7	6	5	4	3	2	1	0
DPL.7	DPL.6	DPL.5	DPL.4	DPL.3	DPL.2	DPL.1	DPL.0

Interrupts

The IA8044/IA8344 provides 5 interrupt sources. There are 2 external interrupts accessible through pins INT0 and INT1, edge or level sensitive (falling edge or low level). There are, also, internal interrupts associated with Timer 0 and Timer 1, and an internal interrupt from the SIU.

External Interrupts

The choice between external interrupt level or transition activity is made by setting IT1 and IT0 bits in the Special Function Register TCON.

When the interrupt event happens, a corresponding Interrupt Control Bit is set (IT0 or IT1). This control bit triggers an interrupt if the appropriate interrupt bit is enabled. When the interrupt service routine is vectored, the corresponding control bit (IT0 or IT1) is cleared provided that the edge triggered mode was selected. If level mode is active, the external requesting source controls flags IT0 or IT1 by the logic level on pins INT0 or INT1 (0 or 1). the state of the

Timer0 and Timer 1 Interrupts

Timer 0 and 1 interrupts are generated by TF0 and TE1 flags, which are set by the rollover of Timer 0 and 1, respectively. When an interrupt is generated, the flag that caused this interrupt is cleared by the hardware, if the CPU accessed the corresponding interrupt service vector. This can be done only if this interrupt is enabled in the IE register.

Serial Interface Unit Interrupt

The SIU generates an interrupt when a frame is received or transmitted. No interrupts are generated for a received frame with errors.

Interrupt Priority Level Structure

There are two priority levels in the IA8044/IA8344, and any interrupt can be individually programmed to a high or low priority level. Modifying the appropriate bits in the Special Function Register IP can accomplish this. A low priority interrupt service routine will be interrupted by a high priority interrupt. However, the high priority interrupt can not be interrupted.

If two interrupts of the same priority level occur, an internal polling sequence determines which of them will be processed first. This polling sequence is a second priority structure defined as follows:

IE0 1 – highest **TF0 2 IE13 TF14** SIU - lowest

Interrupt Handling

The interrupt flags are sampled during each machine cycle. The samples are polled during the next machine cycle. If an interrupt flag is captured, the interrupt system will generate an LCALL instruction to the appropriate service routine, provided that this is not disabled by the following conditions:

1. An interrupt of the same or higher priority is processed

2. The current machine cycle is not the last cycle of the instruction (the instruction can not be interrupted).

3. The instruction in progress is RETI or any write to IE or IP registers.

Note that if an interrupt is disabled and the interrupt flag is cleared before the blocking condition is removed, no interrupt will be generated, since the polling cycle will not sample any active interrupt condition. In other words, the interrupt condition is not remembered. Every polling cycle is new.

Interrupt Priority Register (IP):

This register sets the interrupt priority to high or low for each interrupt. When the bit is set it selects con cr high priority. Within each level the interrupts are prioritized as follows:

External interrupt 0 Timer/counter 0 External interrupt 1 Timer/counter 1 SIU.

An interrupt process routine cannot be interrupted by an interrupt of lesser or equal priority.

IP									
Bit: 7	6	5	4	3	2	1	0		
-	-	-	PS	PT1	PX1	PT0	PX0		
IP.0	PX0	Exterr	nal Interrupt	0 interrupt	priority bit.				
IP.1	PT0	Timer	0. interrupt	priority bit.					
IP.2	PX1		nal interrupt		priority bit.				
IP.3	PT1		1 interrupt p						
IP.4	PS		terrupt prior						
IP.5	-			Ū					
IP.6	-								
IP.7	-								

Interrupt Enable Register (IE):

Contains the global interrupt enable bit and individual interrupt enable bits. Setting a bit enables the corresponding interrupt.

IE								
Bit: 7	6	5	4	3	2	1	0	
EA	-	-	ES	ET1	EX1	ET0	EX0	
PCON.0	E	EX0			errupt enable	bit.		
PCON.1		ETO		terrupt enabl				
PCON.2		EX1			errupt enable	bit.		
PCON.3		ET1 Timer 1 interrupt enable bit.						
PCON.4	E	ES SIU interrupt enable bit.						
PCON.5	-							
PCON.6	-				al.			
PCON.7	E	ΞA	Enable All	interrupts bit				
		1		·爱·芬·蒂	Se st %-			

Copyright ã 2003 innovASIC ______The End of Obsolescenceä

SIU – Serial Interface Unit

The SIU is a serial interface customized to support SDLC/HDLC protocol. As such it supports Zero Bit insertion/deletion, flags automatic access recognition and a 16 bit CRC. The SIU has two modes of operation AUTO and FLEXIBLE. The AUTO mode uses a subset of the SDLC protocol implemented in hardware. This frees the CPU from having to respond to every frame but limits the frame types. In the FLEXIBLE mode every frame is under CPU control and therefore more options are available. The SIU is controlled by and communicates to the CPU by using several special function registers (SFRs). Data transmitted by or received by the SIU is stored in the 192 byte internal RAM in blocks referred to as the transmit and receive buffers. The SIU can support operation in one of three serial data link configurations: 1) half-duplex, point-to-point, 2) half-duplex, multipoint, 3) loop mode.

SIU Special Function Registers

ven s The CPU controls the SIU and receives status from the SIU via eleven special function registers. The Serial Interface Unit Control Registers are detailed below:

Serial Mode Register (SMD):

The serial mode register sets the operational mode of the SIU. The CPU can read and write SMD. The SIU can read SMD. To prevent conflicts between CPU and SIU accesses to SMD the CPU should write SMD only when RTS and RBE bits in the STS register are both zero. SMD is normally only accessed during initialization. This register is byte addressable.

SMD									
Bit: 7	6	5	4	3	2	1	0		
SCM2	SCM1	SCM0	NRZI	LOOP	PFS	NB	NFCS		
SMD.0	NFCS	When set	t selects No F	CS field contai	ned in the	SDLC fra	ame.		
SMD.1	NB	Non-buffered mode. No control field contained in SDLC frame.							
SMD.2	PFS	Pre-frame sync mode. When set causes two bytes to be							
	transmitted before the first flag of the frame for DPLL								
				RZI is set 00H			wise 55H.		
		This ensu	ures that 16 tr	ansitions are se	nt before	the openi	ng flag.		
SMD.3	LOOP	When set	t selects loop	configuration e	else point-t	o-point n	node.		
SMD.4	NRZI	When set	t selects NRZ	I encoding oth	erwise NR	Z.			
SMD.5	SCM0	Select clo	ock mode - bi	t 0 .					
SMD.6	SCM1	Select clock mode - bit 1.							
SMD.7	SCM2	Select clo	ock mode - bi	t 2 .					

SMD Select Clock Mode Bits

SCM	Clock Mode	Data Rate
210		(Bits/sec)*
000	Externally clocked	0 – 2.4M**
001	Undefined	
010	Self clocked, timer overflow	244 - 62.5K
011	Undefined	
100	Self clocked, external 16X	0 – 375K
101	Self clocked, external 32X	0 – 187.5K
110	Self clocked, internal fixed	375K
111	Self clocked, internal fixed	187.5K

* based on a12 MHz crystal frequency

** 0 – 1M bps in loop configuration

Status/Command Register (STS):

The Status/Command register provides SIU control from and status to the CPU. The SIU can read the STS and can write certain bits in the STS. The CPU can read and write the STS. Accessing the STS by the CPU via 2 cycle instructions (JBC bit,rel and MOV bit,C) should not be used. STS is bit addressable.

A. R.

STS									
Bit: 7	6	5	4	3	2	1	0		
TBF	RBE	RTS	SI	BOV	OPB	AM	RBP		
STS.0	RBP			ct. When set j Causes RNR re					
STS.1	AM								
STS.2	OPB			hen set the SI the P=0). The					
STS.3	BOV	Receive h	ouffer overr	un. The SIU o	can set or cle	ar BOV.			
STS.4	SI			bit is set by the eturning from			eared		
STS.5	RTS	Request t transmit mode. R Can be tl	to send. Th or is transm TS is only a nought of as	is bit is set wh itting. May be pplied to the e a Transmit E rted version o	en the SIU i e written by t external pin i nable. Note	s ready to he SIU in n non-loo	p mode.		

STS.6	RBE	Receive buffer empty. RBE is set by the CPU when it is ready to receive a frame or has just read the buffer. RBE is cleared by the SIU when a frame has been received. Can be thought of as a Receive Enable.
STS.7	TBF	Transmit buffer full. TBF is set by the CPU to indicate that the transmit buffer is ready and TBF is cleared by the SIU.

Send/Receive count register (NSNR):

The NSNR contains both the transmit and receive sequence numbers in addition to the tally error indications. The CPU can read and write the STS. Accessing the STS by the CPU via 2 cycle instructions (JBC bit,rel and MOV bit,C) should not be used. The SIU can read and write the NSNR. The NS and NR counters are not used in non-AUTO mode. NSNR is bit addressable.

.....

NSNR					A B				
Bit: 7	6	5	4	3 👞 🔩	2	1	0		
NS2	NS1	NS0	SES	NR2	NR1	NR0	SER		
				32	U				
NSNR.0	SE	ER	Sequence en	ror receive. N	S (P) ? NR	(S).			
NSNR.1	N	R0	Receive sequence counter, Bit 0.						
NSNR.2	N	R1	Receive sequence counter, Bit 1.						
NSNR.3	N	R2	Receive sequence counter, Bit 2.						
NSNR.4	SE	ES	Sequence en	ror send. NR (P)? NS (S)	and			
			NR (P) ? N	S (S) + 1.					
NSNR.5	N	S0	Send sequen	ce counter, Bi	t 0.				
NSNR.6	N	S1	Send sequence counter, Bit 1.						
NSNR.7	N	S2	Send sequence counter, Bit 2.						

Station Address register (STAD):

The STAD contains the station address (node address) of the chip. The CPU can read or write STAD but should access STAD only when RTS = 0 and RBE = 0. Normally STAD is accessed only during initialization. STAD is byte addressable.

STAD							
Bit: 7	6	5	4	3	2	1	0
STAD.7	STAD.6	STAD.5	STAD.4	STAD.3	STAD.2	STAD.1	STAD.0

Transmit Buffer Start Address Register (TBS):

The TBS contains the address in internal RAM where the frame (starting with the I-field) to be transmitted is stored. The CPU should access TBS only when the SIU is not transmitting a frame, TBF = 0. TBS is byte addressable.

TBS							
Bit: 7	6	5	4	3	2	1	0
TBS.7	TBS.6	TBS.5	TBS.4	TBS.3	TBS.2	TBS.1	TBS.0

Transmit Buffer Length Register (TBL):

The TBL contains the length, in number of bytes, of the I-field to be transmitted. TBL = 0 is valid (no I-field). The CPU should access TBL only when the SIU is not transmitting a frame, TBF = 0. The transmit buffer will not wrap around after address 191 (BFH). A buffer end is automatically generated when address 191 is reached. TBL is byte addressable.

TBL				Se a			
Bit: 7	6	5	4	3	2	1	0
TBL.7	TBL.6	TBL.5	TBL.4	TBL.3	TBL.2	TBL.1	TBL.0

Transmit Control Byte Register (TCB):

The TCB contains the byte to be placed in the control field of the transmitted frame during non-AUTO mode transmission. The CPU should access TCB only when the SIU is not transmitting a frame, TBF = 0. TCB is byte addressable.

TCB							
Bit: 7	6	5	4	3	2	1	0
TCB.7	TCB.6	TCB.5	TCB.4	TCB.3	TCB.2	TCB.1	TCB.0

<u>Receive Buffer Start Address Register (RBS):</u>

The RBS contains the address in internal RAM where the frame (starting with the I-field) being received is to be stored. The CPU should write RBS only when the SIU is not receiving a frame, RBE = 0. RBS is byte addressable.

RBS							
Bit: 7	6	5	4	3	2	1	0
RBS.7	RBS.6	RBS.5	RBS.4	RBS.3	RBS.2	RBS.1	RBS.0

<u>**Receive Buffer Length Register (RBL):**</u>

The RBL contains the length, in number of bytes, of the I-field storage area in internal RAM. RBL = 0 is valid (no I-field). The CPU should write RBL only when the SIU is not receiving a frame, RBE = 0. The receive buffer will not wrap around after address 191 (BFH). A buffer end is automatically generated when address 191 is reached. RBL is byte addressable.

RBL							
Bit: 7	6	5	4	3	2	1	0
RBL.7	RBL.6	RBL.5	RBL.4	RBL.3	RBL.2	RBL.1	RBL.0

Receive Field Length Register (RFL):

The RFL contains the length, in number of bytes, of the I-field of the frame received and stored in internal RAM. RFL = 0 is valid (no I-field). The CPU should access RFL only when the SIU is not receiving a frame, RBE = 0. RFL is loaded by the SIU. RFL is byte addressable. 3 S

RFL				8 3 P	A.C.		
Bit: 7	6	5	4	3	2	1	0
RFL.7	RFL.6	RFL.5	RFL.4	RFL.3	RFL.2	RFL.1	RFL.0

Receive Control Byte Register (RCB):

The RCB contains the control field of the frame received and stored in internal RAM. RCB is only readable by the CPU and the CPU should access RCB only when the SIU is not receiving a frame, RBE = 0. RCB is loaded by the SIU. RCB is byte addressable.

RCB							
Bit: 7	6	5	4	3	2	1	0
RCB.7	RCB.6	RCB.5	RCB.4	RCB.3	RCB.2	RCB.1	RCB.0

DMA Count Register (DMA CNT):

The DMA CNT register contains the number of bytes remaining for the information field currently being used. This register is an ICE support register. DMA CNT is byte addressable.

DMA CNT

Bit: 7	G	Б	4	9	9	1	0
	0	5	4	3	۵	1	0
DMA	DMA	DMA	DMA	DMA	DMA	DMA	DMA
CNT.7	CNT.6	CNT.5	CNT.4	CNT.3	CNT.2	CNT.1	CNT.0

www.innovasic.com **Customer Support:** 1-888-824-4184

DMA Count Register (FIFO):

The FIFO register is actually three registers that make a three byte FIFO. These are used as temporary storage between the eight bit shift register and the receive buffer when an information field is received. This register is an ICE support register. FIFO is byte addressable.

FIFO							
Bit: 7	6	5	4	3	2	1	0
FIFO*.7	FIFO*.6	FIFO*.5	FIFO*.4	FIFO*.3	FIFO*.2	FIFO*.1	FIFO*.0

* = 1, 2 or 3 for FIFO1, FIFO2, FIFO3 respectively.

SIU State Counter (SIUST):

The SIUST register indicates which state the SIU state machine is currently in. This in turn indicates what task the SIU is performing or which field is expected next by the SIU. This register should not be written to. This register is an ICE support register. SIUST is byte addressable.

A M

SIUST							
Bit: 7	6	5	4	3	2	1	0
SIUST .7	SIUST .6	SIUST .5	SIUST .4	SIUST .3	SIUST .2	SIUST .1	SIUST .0

Data Clocking Options

The SIU may be clocked in one of two ways, with an external clock or in a self-clocked mode.

In the external clocked mode a serial clock must be provided on SCLK. This clock must be synchronized to the serial data. Incoming data is sampled at the rising edge of SCLK. Outgoing data is shifted out at the falling edge of SCLK.

In the self-clocked mode the SIU uses a reference clock and the serial data to reproduce the serial data clock. The reference clock can be an external source applied to SCLK, the IA8044/IA8344's internal clock or the timer 1 overflow. The reference clock must be 16x or 32x the data rate. A DPLL uses the reference clock and the serial data to adjust the sample time to the center of the serial bit. It does this by adjusting from a serial data transition in increments of 1/16 of a bit time.

The maximum data rate in the externally clocked mode is 2.4Mbps in a point-to-point configuration and 1.0Mbps in a loop configuration. With a 12 MHz cpu clock the maximum data rate in the self-clocked mode with an external clock is 375Kbps. The maximum data rate in the self-clocked mode with an internal clock will depend on the frequency of the IA8044/IA8344's input clock. An IA8044/IA8344 using a 12MHz input clock can operate at a maximum data rate of 375Kbps.

The Serial mode register bits 5, 6, and 7 select the clocking option for the SIU. (see SMD register description)

Operational Modes

The SIU operates in one of two modes, AUTO or FLEXIBLE. The mode selected determines how much intervention is required by the CPU when receiving and transmitting frames. In both modes short frames, aborted frames, and frames with CRC errors will be ignored.

AUTO mode allows the SIU to recognize and respond to specific SDLC frames without the CPUs intervention. This provides for a faster turnaround time but restricts the operation of the SIU. When in AUTO mode the SIU can only act as a normal response secondary station and responses will adhere to IBM's SDLC definitions.

When receiving in the AUTO mode the SIU receives the frame and examines the control byte. It will then take the appropriate action for that frame. If the frame is an information frame the SIU will load the receive buffer, interrupt the CPU and make the required response to the primary station. The SIU in AUTO mode can also respond to the following commands from the primary station.

RR (Receive ready), RNR (Receive Not Ready), REJ (Reject), UP (Unnumbered Poll) also called NSP (Non-Sequenced Poll) or ORP (Optional Response Poll).

In AUTO mode when the transmit buffer is full the SIU can transmit an information frame when polled for information. After transmission the SIU waits for acknowledgement from the receiving

Copyright ã 2003 innovASIC _____ The End of Obsolescenceä ENG210010112-00

www.innovasic.com Customer Support: 1-888-824-4184

Page 33 of 49

station. If the response is positive the SIU interrupts the CPU. If the response is negative the SIU retransmits the frame. The SIU can send the following responses to the primary station.

RR (Receive Ready), RNR (Receive Not Ready).

The FLEXIBLE mode requires the CPU to control the SIU for both transmitting and receiving. This slows response time but allows full SDLC and limited HDLC compatibility as well as variations. In FLEXIBLE mode the SIU can act as a primary station. The SIU will interrupt the CPU after completion of a transmission without waiting for a positive acknowledgement from the receiving station.

Basic SDLC	Frame				
FLAG	ADDRESS	CONTROL	INFORMATION	FCS	FLAG
				•	

IA8X44 Fram Flag Address Control	ne parameters: - 8 bits - 8 bits - 8 bits	
Information FCS Flag	 - n bytes (where n ≤ 192) - 16 bits - 8 bits 	

Frame Format Options

The various frame formats available with the IA8044/IA8344 are the standard SDLC format, the no control field format, the no control field and no address field format and the no FCS field format.

The standard SDLC format consists of an opening flag, an 8-bit address field, an 8-bit control field, and n-byte information field, a 16-bit frame check sequence field and a closing flag. The FCS is generated by the CCIT-CRC polynomial (X16 + X12 + X5 + 1). The FCS is calculated on the address, control and information fields. The address and control fields may not be extended. The address is contained in STAD and the control filed is contained in either RCB or TCB. This format is supported by both AUTO and FLEXIBLE modes.

The no control field format is only supported by the FLEXIBLE mode. In this format TCB and RCB are not used and the information field starts immediately after the address field. A control field may still be used in the frame but the SIU will treat it as a byte of the information field.

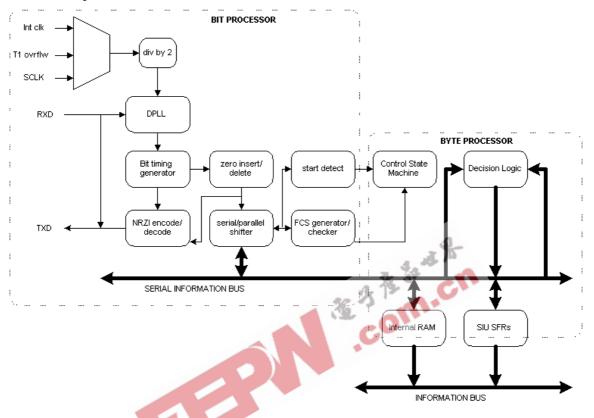
The no control field and no address field format is only supported by the FLEXIBLE mode. In this format STAD, TCB and RCB are not used and the information field starts immediately after the opening flag. This option can only be used with the no control field option. Again a control field and address field may still be used in the frame but the SIU will treat each as a byte of the information field.

The no FCS field format prevents an FCS from being generated during transmission or being checked during reception. This option may be used in conjunction with the other frame format options. This option will work with both FLEXIBLE and AUTO modes. In AUTO mode it could cause protocol violations. An FCS field may still be used in the frame but the SIU will treat it as a byte of the information field.

All the possible Frame Format combinations are shown in the table below along with the bit settings that select a given format.

Frame Format Options

Frame Option	NFCS	NB	AM	Frame Format			
Standard SDLC	0	0	0	Fl Ad Co Inf FCS Fl			
FLEXIBLE Mode	U	0	0	FI Au CO IIII FCS FI			
Standard SDLC	0	0	1	Fl Ad Co Inf FCS Fl			
AUTO Mode	U	0	1	FI Au CO IIII FCS FI			
No Control Field	0	1	1	Fl Ad Inf FCS Fl			
FLEXIBLE Mode	0	1	I	ri Au mi res ri			
No Control Field							
No Address Field	0	1	0	Fl Inf FCS Fl			
FLEXIBLE Mode							
No FCS Field	1	0	0	Fl Ad Co Inf Fl			
FLEXIBLE Mode	1	0	0	FI Au CO IIII FI			
No FCS Field	1	0	1	Fl Ad Co Inf Fl			
AUTO Mode	1	0	1	FI Au CO III FI			
No Control Field				A The			
No FCS Field	1	1	1 3	Fl Ad Inf Fl			
FLEXIBLE Mode			x1	2 61			
No Control Field			32	-m-			
No Address Field	1		0	Fl Inf Fl			
No FCS Field	1	$\sim 1.$	0				
FLEXIBLE Mode							
Fl -> Flag							
Ad -> Address Field							
Co -> Control Field							
Inf -> Information Field							
FCS -> Frame Check Seque	ence						


HDLC Restrictions

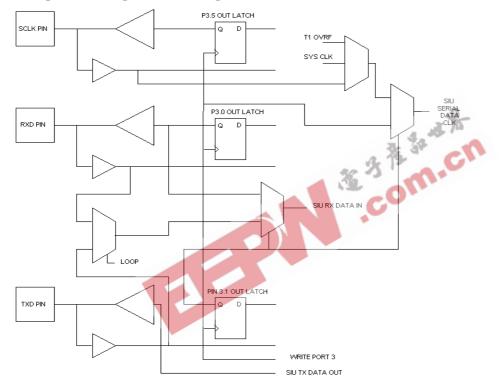
The IA8044/IA8344 supports a subset of the HDLC protocol. The differences include the restriction by the IA8044/IA8344 of the serial data to be in 8-bit increments. In contrast HDLC allows for any number of bits in the information field. HDLC provides an unlimited address field and an extended frame number sequencing. HDLC does not support loop configuration.

SIU Details

The SIU is composed of two functional blocks with each having several sub blocks. The two blocks are called the bit processor (BIP) and the byte processor (BYP).

Bit and Byte Processors

<u>BIP</u>


The BIP consists of the DPLL, NRZI encoder/decoder, serial/parallel shifter, zero insertion/deletion, shutoff logic and FCS generation/checking. The NRZI logic compares the current bit to the previous bit to determine if the bit should be inverted. The serial shifter converts the outgoing byte data to bit data and incoming bit data to byte data. The zero insert/delete circuitry inserts and deletes zeros and also detects flags(0111110), go-aheads (GA) (0111111) and aborts (111111). The pattern 111110 is detected as an early go-ahead that can be turned into a flag in loop configurations. The shutoff detector is a three bit counter that is used to detect a sequence of eight zeros, which is the shutoff command in loop mode transmissions. It is cleared whenever a one is detected. The FCS logic performs the generation and checking of the FCS value according to the polynomial described above. The FCS register is set to all 1's prior to each calculation. If a CRC error is generated on a receive frame the SIU will not interrupt the CPU and the error will be cleared upon receiving an opening flag.

<u>BYP</u>

The BYP contains registers and controllers used to perform the manipulations required for SDLC communications. The BYP registers may be accessed by the CPU (see SFR section above). The BYP contains the SIU state machine that controls transmission and reception of frames.

A diagnostic mode is included with the IA8044/IA8344 to allow testing of the SIU. Diagnostics use port pins P3.0 and P3.1. Writing a 0 to P3.1 enables the diagnostic mode. When P3.1 is cleared writing data to P3.0 has the effect of writing a serial data stream to the SIU. P3.0 is the serial data and any write to port 3 will clock SCLK. The transmit data may be monitored on P3.1 with any write to port 3 again clocking SCLK. In the test mode P3.0 and P3.1 pins are placed in the high impedance state.

Diagnostic Signal Routing

AC/DC Parameters

Absolute Maximum Ratings:

Ambient temperature under bias	40°C to +85°C
Storage temperature	40°C to 150°C
Power Supply (V _{DD})	0.3 to +6VDC
Voltage on any pin to VSS	0.3 to (V _{DD} +0.3) - See Note 1
Power dissipation	

DC Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
VIL	Input Low Voltage	-	-	0.8	V
VIH	Input High Voltage	2.0	1.1	- 70	V
VOL	Output Low Voltage (IOL= 4mA)	- 38.	4.5	0.4	V
VOH	Output High Voltage (IOH= 4mA)	3.5	× - (V
RPU	Pull-Up Resistance (Ports 1,2,3)	5 .	50	-	KΩ
RPD	Pull-Down Resistance (RST)	- C	50	-	KΩ
IIL	Input Low Current (Ports 1, 2, 3)	-100		1	μA
IIL1	Input Low Current (all other inputs)	-1		1	μA
IIH	Input High Current (RST)	-1	-	100	μA
IIH1	Input High Current (all other inputs)	-1		1	μΑ
IOZ	Tri-state Leakage Current (Port 0,1,2,3)	-10		10	μA
ICC	Power Supply Current (@ 12 MHz)			50	mA
CIO	Pin Capacitance	-	4	-	pF

Notes:

1. This device does not contain EPROM or it's related programming circuitry. Therefore this limit must be adhered to especially for input pin EA that in the Intel device is used as the programming voltage pin. Exceeding the listed maximum voltage will cause damage to the device.

A.C. Characteristics

$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $VDD = 5V \pm 10\%$, VSS = 0V, Load Capacitance = 87pF

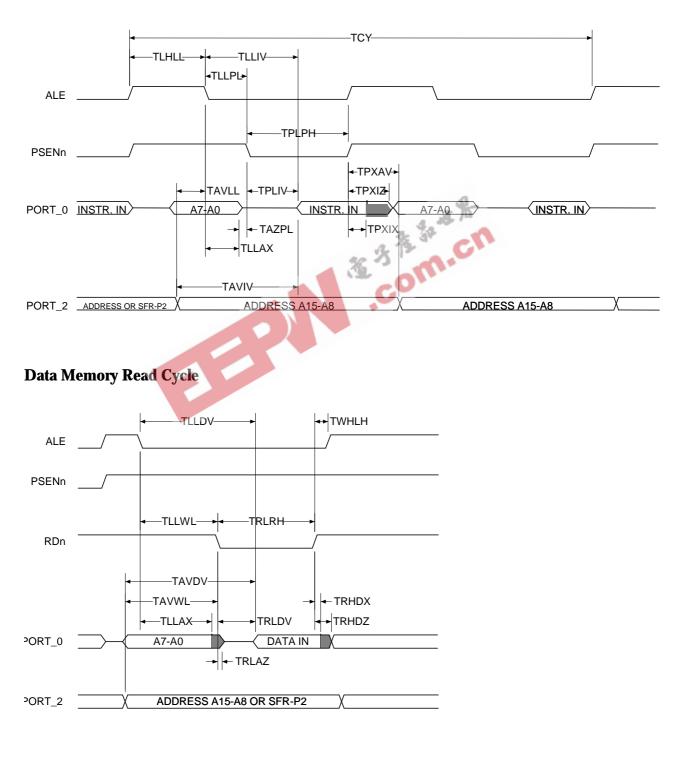
Symbol	Parameter	12 MH	lz Osc		ck 1/TCLCL TO 12 MHz	Unit
-		Min	Max	Min	Max	
TLHLL	ALE Pulse Width	171		2TCLCL+4		ns
TAVLL	Address Valid to ALE Low	75		TCLCL-8		ns
TLLAX	Address Hold After ALE Low	74		TCLCL-9		ns
TLLIV	ALE Low to Valid Instr. In.		298		4TCLCL-35	ns
TLLPL	ALE Low to PSENn Low	83		TCLCL		ns
TPLPH	PSENn Pulse Width	254		3TCLCL+4		ns
TPLIV	PSENn Low to Valid Instr. In		215		3TCLCL-35	ns
TPXIX	Input Instr. Hold After PSENn	0	3	0		ns
TPXIZ	Input Instr. Float After PSENn		76		TCLCL-7	ns
TPXAV	PSENn to Address Valid	91		TCLCL+8		ns
TAVIV	Address to Valid Instr. In	x XT	373		5TCLCL-43	ns
TAZPL	Address Float to PSENn	-9		-9		ns
ТСҮ	Machine cycle	996		12TCLCL		ns

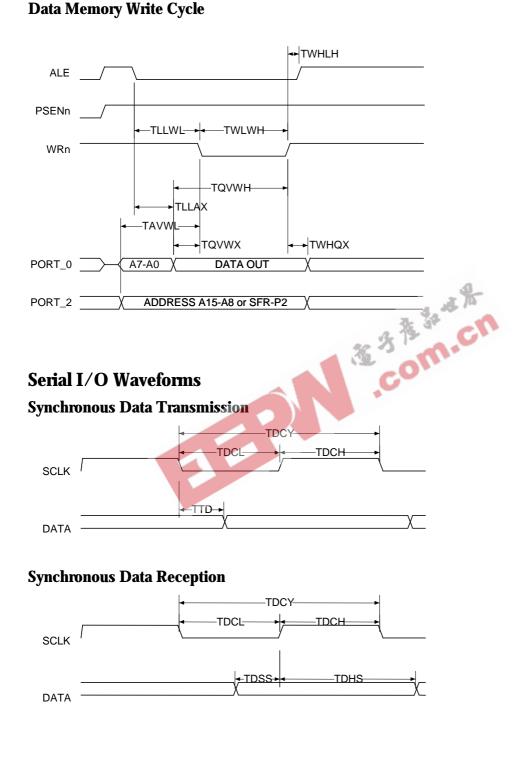
External Program Memory Characteristics

External Data Memory Characteristics

Symbol	Parameter	12 MH	z Osc		k 1/TCLCL = O 12 MHz	Unit
		Min	Max	Min	Max	
TRLRH	RDn Pulse Width	487		6TCLCL-13		ns
TWLWH	WRn Pulse Width	487		6TCLCL-13		ns
TLLAX	Address Hold After ALE	74		TCLCL-9		ns
TRLDV	RDn Low to Valid Data In.		383		5TCLCL-35	ns
TRHDX	Data Hold After RDn	0		0		ns
TRHDZ	Data Float After RDn		165		2TCLCL-2	ns
TLLDV	ALE Low to Valid Data In		633		8TCLCL-34	ns
TAVDV	Address to Valid Data In.		708		9TCLCL-42	ns
TLLWL	ALE Low to RDn or WRn Low	250	250	3TCLCL	3TCLCL	ns
TAVWL	Address to RDn or WRn Low	325		4TCLCL-8		ns
TQVWX	Data Valid to WRn Transistion	76		TCLCL-7		ns
TQVWH	Data Setup Before WRn High	563		7TCLCL-20		ns
TWHQX	Data Held After WRn	86		TCLCL+3		ns
TRLAZ	RDn Low to Address Float		9		9	ns
TWHLH	RDn or WRn High to ALE High	83	83	TCLCL	TCLCL	ns

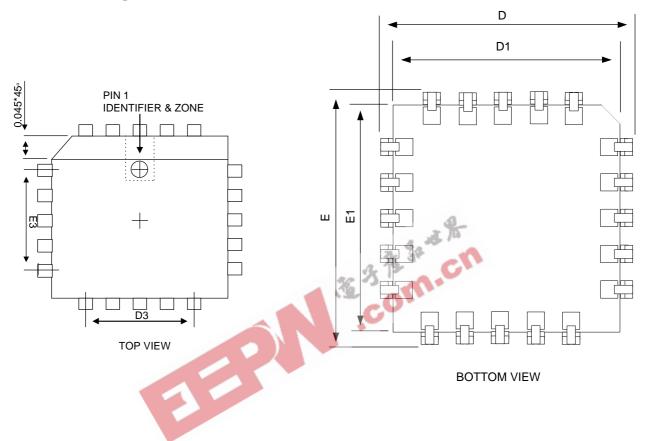
Serial Interface Characteristics

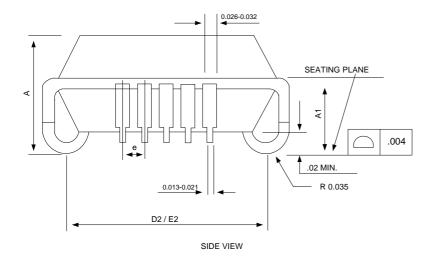

Symbol	Parameter	Min	Max	Unit
TDCY	Data Clock	420		ns
TDCL	Data Clock Low	184		ns
TDCH	Data Clock High	184		ns
tTD	Transmit Data Delay		125	ns
tDSS	Data Setup Time	26		ns
tDHS	Data Hold Time	58		ns


External Clock Drive Characteristics

Symbol	Parameter	Min	Max 🔨	Unit
TCLCL	Oscillator Period	52		ns
		.c	01.	

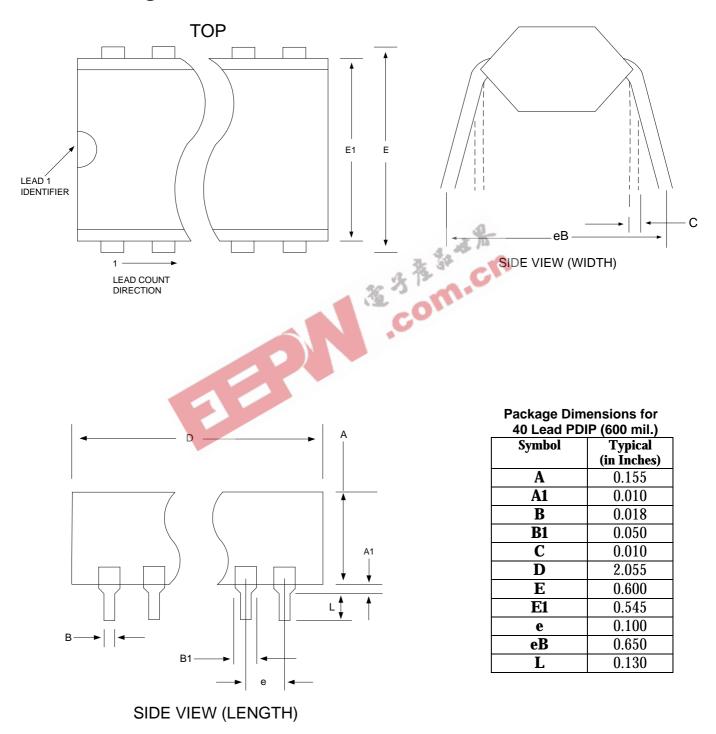
Waveforms <u>Memory Access</u>


Program Memory Read Cycle



Packaging Information

PLCC Package



-)imensions for 44 Lead PLCC
Symbol	Typical
5	(in Inches)
Α	0.180
A1	0.110
D1	0.653
D2	0.610
D3	0.500
E1	0.653
E2	0.610
E3	0.500
e	0.050
D	0.690
E	0.690

Copyright ã 2003 innovASIC L_____ The End of Obsolescenceä ENG210010112-00

Page 44 of 49

PDIP Package

• Ordering Information

Part Number	Temperature Grade
IA8044-PDW40I-01	Industrial
IA8044-PLC44I-01	Industrial
IA8344-PDW40I-01	Industrial
IA8344-PLC44I-01	Industrial

• Cross Reference to Original Part Numbers

innovASIC Part Number	IntelÒ Part Number
IA8044-PLC44I	 N8044AH N8044AH-R0117
IA8044-PDW40I	 P8044 P8044AH P8044AH-R0117 TP8044AH TP8044AH-R0117
IA8344-PLC44I	 N8344AH TN8344AH
IA8344-PDW40I	 P8344 P8344AH TP8344AH

• Errata

Errata data listed for a particular version of the device apply only to that version. If errata data applies to more than one version it will be listed under each version affected. Errata data that applies to all versions is listed under the heading "Version ALL". InnovASIC devices are manufactured as prototypes and production units. Prototype versions are denoted as 'PXX' and production versions are denoted as 'XX' with XX being the version number (i.e. 03).

Version ALL:

ISSUE: SOLUTION:	Cannot read internal ROM with EPROM verification method. Must use alternate method to read internal ROM. The IA8X44 does not contain internal EPROM and therefore does not support the EPROM read feature.
ISSUE:	The IA8X44 has a different pullup value than the Intel version. The Intel version can source more current than the IA8X44.
SOLUTION:	The IA8X44 has a different pullup value than the Intel version. The Intel version can source more current than the IA8X44. Adjust external circuits if necessary. Incorrect version of Intel 8044 code in internal ROM. Internal ROM contains
Version P00:	3 com.
ISSUE:	Incorrect version of Intel 8044 code in internal ROM. Internal ROM contains version 2.1 it should contain version 2.3.
SOLUTION:	Version 2.3 ROM code must be run from external memory. Future versions of device will contain version 2.3.
ISSUE:	The JMP @A+DPTR instruction incorrectly adds carry out of lower byte into higher byte of calculated PC value (was using carry as if the @A was a signed value, should be an absolute value)
SOLUTION:	be an absolute value). Avoid use of this instruction or modify code to account for error. Future versions of device will execute this instruction correctly.
ISSUE:	When using edge sensitive interrupts the device may miss an interrupt. The problem occurs when enabling the interrupts or when TCON is being written to.
SOLUTION:	Change to level sensitive interrupts or use external registers for INT0/1.
ISSUE: Reads	from unused internal locations return 00h. when they should return FFh except for two locations which should return 00h.
SOLUTION:	Avoid reading unused locations or mask the value from unused locations.
ISSUE:	Setting IE0 or IE1 in TCON does not force an interrupt when in level sensitive mode.
SOLUTION:	Use edge sensitive mode for these two interrupt sources.

ISSUE: SOLUTION:	Port2 buffer bits set high are not actively driven when executing a MOVX A,@Ri or a MOVX @Ri,A instruction. During these instructions any bit that was driven low by the previous value on Port2 but is high in the Port2 buffer will not reach a valid high level before ALE goes low. Avoid the use of these instructions or add strong pullups (approximately 10K) to Port2 externally.
ISSUE:	Race condition on transmit response in AUTO mode causes bad control byte to be
155012.	transmitted
SOLUTION:	In firmware wait for RTS=1 before telling transmit to start.
ISSUE:	Device does not sense the end of buffer during a receive.
SOLUTION:	No workaround available.
ISSUE:	Receiving continuous flags (7Eh) while in loop mode will not allow a slave device to
	° ° ·
SOLUTION:	Do not send continuous flags.
Version 00/P	transmit. The device is only able to transmit when the line is idle. Do not send continuous flags. 01: The following registers change value after an external reset STAD TRS TRL TCR
ISSUE:	The following registers change value after an external reset, STAD, TBS, TBL, TCB,
	RBS, RBL, RFL, and RCB. These registers should retain there pre-reset values.
SOLUTION:	Store register values in memory (internal or external) to be restored after reset.
ISSUE:	Device may miss external interrupts with narrow pulse widths when in edge sensitive
	mode and tight software loops that check TCON.
SOLUTION:	Place NOPs in loop to allow time to capture interrupt
ISSUE:	Intermittent drop out in slave mode, followed by normal operation. Dropouts can be caused by either noise on the reset pin or XTAL1 being unconnected when using a clock source.

SOLUTION: Filter reset if necessary. Ensure that XTAL1 is tied low when using a clock source.

- ISSUE: When used as a slave in loop mode the device may misinterpret a byte due to an internal bit counter error. This may cause the device to think it has seen a go-ahead and can transmit when it actually should not transmit.
- SOLUTION: No workaround available.
- ISSUE: If the synchronous mode is used (external SCLK is provided), gating off the SCLK may cause the device to communicate erratically. Depending on when the SCLK is gated off the SIU may not have finished its present task. When the SCLK is restarted the device may not respond to communications.
- SOLUTION: Do not gate off the external SCLK.

- ISSUE: The chip does not operate properly, showing intermittent errors. Difficulty with accessing external memory. The signals used to access external memory do not have the correct timing.
- SOLUTION: Adjust signal timing externally if possible.
- ISSUE: The device exhibits a 24MHz ripple on output pins. Clock/Osc switching causes noise to be induced onto power rails.
- SOLUTION: No workaround available.
- ISSUE: The chip fails when placed in emulators. ALE and PSEN do not tristate during reset.
- SOLUTION: No workaround available.

Copyright ã 2003 innovASIC L The End of Obsolescenceä