

Integrated Circuit Systems, Inc.

ICS9120-52

Frequency Generator for CD-ROM Systems

General Description

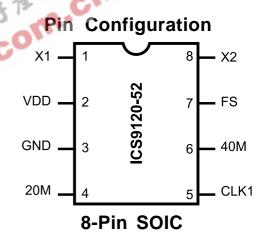
The **ICS9120-52** is a high performance frequency generator designed to support digital compact disk drive systems. It offers all clock frequencies required for the servo and decoder sections of these devices. These frequencies are synthesized from a single 16.9344 MHz on-chip oscillator.

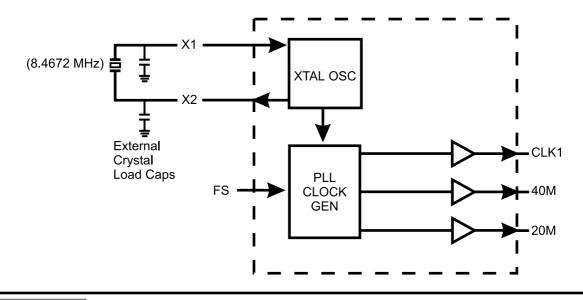
High accuracy, low jitter PLLs meet the 150 ppm frequency tolerance required by these systems. Fast output clock edge rates minimize board induced jitter.

Unlike competitive devices, the **ICS9120-52** operates over the entire 3.0-5.5V range.

Functionality

X1, X2 (MHz)	FS	Divisor	CLK1	
8.4672	0	X12÷3	33.8688	
86.4672	1	X61÷6	42.83	
-	-			
Clock	X1, X2 (MHz)	Divisor	Output (MHz)	
Clock 20M	,	Divisor X52÷11÷2		


Block Diagram


Features

- Generates 33.8688 MHz or 42.83 MHz decode clocks plus the 20 and 40 MHz fixed clocks
- Single 8.4672 MHz crystal or system clock reference
- 200ps one sigma jitter maintains 16-bit performance
- Output rise/fall times less than 2.0ns
- On-chip loop filter components
- 3.3V-5V supply range
- 8-pin, 150-mil SOIC

Applications

• Specifically designed to support the high performance requirements of CD-ROM drive systems

ICS reserves the right to make changes in the device data identified in this publication without further notice. ICS advises its customers to obtain the latest version of all device data to verify that any information being relied upon by the customer is current and accurate.

ICS9120-52

Pin Descriptions

PIN NUMBER	PIN NAME	ТҮРЕ	DESCRIPTION
1	X1	Input	Crystal or external clock source. Has feedback bias for crystal.
2	VDD	Power	+Power supply input.
3	GND	Power	Ground return for Pin 2.
4	20M	Output	20 MHz fixed output clock.
5	CLK1	Output	33.8/42.83 MHz selectable clock output.
6	40M	Output	40 MHz fixedoutput clock.
7	FS	Input	Input selector for CLK1.
8	X2	Output	Crystal output drive.

... output drive.

ICS9120-52

Absolute Maximum Ratings

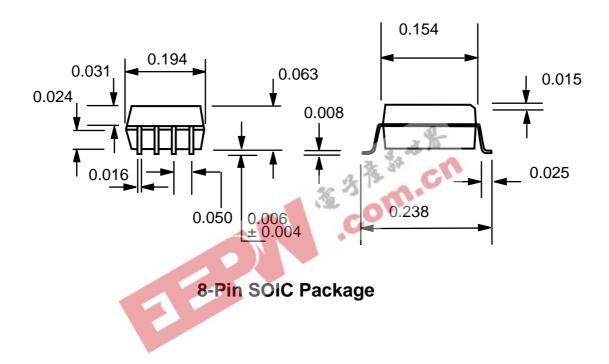
AVDD, VDD referenced to GND	
Operating temperature under bias	$0^{\circ}C$ to $+70^{\circ}C$
Storage temperature	-65° C to $+150^{\circ}$ C
Voltage on I/O pins referenced to GND	GND -0.5V to VDD +0.5V
Power dissipation	

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Electrical Characteristics at 5 V

		DC Characteristics	A A A	2		
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Low Voltage	VIL	130		-	0.8	V
Input High Voltage	VIH		2.0	-	-	V
Input Low Current	IIL	VIN=0V	-18.0	-8.3	-	μA
Input High Current	Іш	VIN=VDD	-	-	5.0	μA
Output Low Voltage	VOL*	IOL=+10mA	-	0.15	0.4	V
Output High Voltage	Vон*	IOH=-30mA	2.4	3.7	-	V
Output Low Current	IOL*	VOL=0.8V	25.0	45.0	-	mA
Output High Current	Іон*	Voh=2.4V	-	-53.0	-35.0	mA
Supply Current	IDD	Unloaded	-	26.0	50.0	mA
Pull-up Resistor Value	Rpu*		-	400.0	800.0	k ohm
		AC Characteristics				
Rise Time	Tr*	15pF load, 0.8 to 2.0V	-	0.9	2.0	ns
Fall Time	Tf^*	15pF load, 2.0 to 0.8V	-	0.7	1.5	ns
Rise Time	Tr*	15pF load, 20% to 80%	-	1.8	3.25	ns
Fall Time	Tf^*	15pF load, 80% to 20%	-	1.4	2.5	ns
Duty Cycle	Dt*	15pF load @ 50% of VDD	45.0	50.0	55.0	%
Jitter, One Sigma	Tj1s*	For all frequencies	-	100.0	200.0	ps
Jitter, Absolute	Tjab*	For all frequencies	-500.0	300.0	500.0	ps
Input Frequency Range	Fi*		8.0	8.4	100.0	MHz
Output Frequency Range	Fo*		11.0	-	42.0	MHz
Output Mean Frequency Accuracy vs. Target	Foa*	With 8.4672 MHz input	-0.125	-	-0.04	%
Power-up Time	Tpu*	0 to 33.8 MHz	-	5.5	12.0	ms
Crystal Input Capacitance	Cinx*	X1 (Pin 1), X2 (Pin 8)	-5	-	-	pF

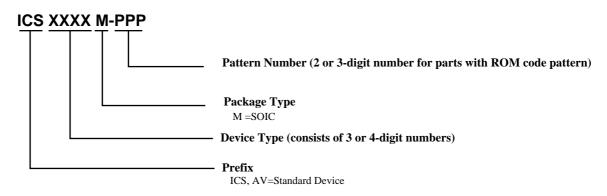
*Parameter is guaranteed by design and characterization. Not 100% tested in production.


Electrical Characteristics at 3.3 V

 V_{DD} = +3.0 to +3.7 V, T_A = $0^O C\text{--}70^o C$ unless otherwise stated

		DC Characteristics				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Input Low Voltage	VIL		-	-	0.2V dd	V
Input High Voltage	VIH		0.7V dd	-	-	V
Input Low Current	IIL	V _{IN} =0V	-8.0	-3.6	-	μA
Input High Current	Іш	$V_{IN} = V_{DD}$	-	-	5.0	μA
Output Low Voltage	Vol*	Iol=6.0mA	-	$0.05 V_{\text{DD}}$	0.1	V
Output High Voltage	V _{OH} *	Ioh=4.0mA	$0.85 V_{DD}$	$0.94 V_{DD}$	-	V
Output Low Current	Iol*	Vol=0.2Vdd	15.0	24.0	-	mA
Output High Current	IOH*	V _{OH} =0.7V _{DD}		-13.0	-8.0	mA
Supply Current	Idd	Unloaded		17.0	40.0	mA
Pull-up Resistor Value	R_{PU}^*	A	14 1	620.0	900.0	k ohm
	•	AC Characteristics			•	
Rise Time	Tr*	15pF load 0.8 to 2.0V	0	1.5	4.0	ns
Fall Time	T _f *	15pF load 2.0 to 0.8V	-	1.0	3.0	ns
Rise Time	Tr*	15pF load 20% to 80%	-	2.2	4.0	ns
Fall Time	T _f *	15pF load 80% to 20%	-	1.5	3.0	ns
Duty Cycle	Dt*	15pF load @ 50% of VDD; Except REFCLK	45.0	50.0	55.0	%
Jitter, One Sigma	T _{j1s} *	For all frequencies except REFCLK	-	150.0	200	ps
Jitter Absolute	$T_{jab}*$	For all frequencies except REFCLK	-550.0	330.0	550.0	ps
Input Frequency Range	Fi*		8.0	8.4	10.0	MHz
Output Frequency Range	Fo*		11.0	-	38.0	MHz
Output Mean Frequency Accuracy vs. Target	Foa*	With 8.4672 MHz input	-0.125	-	-0.04	%
Power-up Time	T _{pu*}	0 to 33.8 MHz	-	5.5	12.0	ms
Crystal Input Capacitance	C_{inx^*}	X1 (Pin 1), X2 (Pin 8)	-	5	-	pF

*Parameter is guaranteed by design and characterization. Not 100% tested in production.



Ordering Information

ICS9120M-52

Example:

