Dual J-K Flip-Flop The MC14027B dual J–K flip–flop has independent J, K, Clock (C), Set (S) and Reset (R) inputs for each flip–flop. These devices may be used in control, register, or toggle functions. - Diode Protection on All Inputs - Supply Voltage Range = 3.0 Vdc to 18 Vdc - Logic Swing Independent of Fanout - Logic Edge—Clocked Flip—Flop Design — Logic state is retained indefinitely with clock level either high or low; information is transferred to the output only on the positive—going edge of the clock pulse - Capable of Driving Two Low–power TTL Loads or One Low–power Schottky TTL Load Over the Rated Temperature Range - Pin-for-Pin Replacement for CD4027B | Symbol | Parameter | Value | Unit | |------------------------------------|--|--------------------------|------| | V_{DD} | DC Supply Voltage Range | -0.5 to +18.0 | V | | V _{in} , V _{out} | Input or Output Voltage Range
(DC or Transient) | -0.5 to $V_{DD} + 0.5$ | V | | I _{in} , I _{out} | Input or Output Current
(DC or Transient) per Pin | ±10 | mA | | P _D | Power Dissipation,
per Package (Note 3.) | 500 | mW | | T _A | Ambient Temperature Range | -55 to +125 | °C | | T _{stg} | Storage Temperature Range | -65 to +150 | °C | | TL | Lead Temperature
(8–Second Soldering) | 260 | °C | - Maximum Ratings are those values beyond which damage to the device may occur. - Temperature Derating: Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \ or \ V_{out}) \leq V_{DD}.$ Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open. ### ON Semiconductor http://onsemi.com ### MARKING DIAGRAMS PDIP-16 P SUFFIX CASE 648 SOEIAJ-16 F SUFFIX CASE 966 A = Assembly Location WL or L = Wafer Lot YY or Y = Year WW or W = Work Week #### ORDERING INFORMATION | Device | Package | Shipping | |-------------|-----------|------------------| | MC14027BCP | PDIP-16 | 2000/Box | | MC14027BD | SOIC-16 | 2400/Box | | MC14027BDR2 | SOIC-16 | 2500/Tape & Reel | | MC14027BF | SOEIAJ-16 | See Note 1. | | MC14027BFEL | SOEIAJ-16 | See Note 1. | For ordering information on the EIAJ version of the SOIC packages, please contact your local ON Semiconductor representative. TRUTH TABLE | | | Outp | uts* | | | | | |----|---|------|------|---|------------------|------------------|------------------| | Cţ | J | K | S | R | Q _n ‡ | Q _{n+1} | Q _{n+1} | | | 1 | Х | 0 | 0 | 0 | 1 | 0 | | | Х | 0 | 0 | 0 | 1 | 1 | 0 | | | 0 | Х | 0 | 0 | 0 | 0 | 1 | | | Х | 1 | 0 | 0 | 1 | 0 | 1 | | | 1 | 1 | 0 | 0 | Qo | Qo | Qo | | ~ | Х | Х | 0 | 0 | Х | Q _n | $\overline{Q_n}$ | | Х | Х | Х | 1 | 0 | Х | 1 | 0 | | Х | Х | Х | 0 | 1 | Х | 0 | 1 | | Х | Х | Х | 1 | 1 | Х | 1 | 1 | No Change # **PIN ASSIGNMENT** ### **BLOCK DIAGRAM** X = Don't Care ^{† =} Level Change ^{‡ =} Present State ^{* =} Next State # **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V_{SS}) | | | | V _{DD} | - 5 | 5°C | | 25°C | | 125 | 5°C | | |---|-----------|-----------------|------------------------|-----------------------------------|----------------------|-----------------------------------|--|----------------------|-----------------------------------|----------------------|------| | Characteristic | | Symbol | Vdc | Min | Max | Min | Typ ^(4.) | Max | Min | Max | Unit | | Output Voltage
V _{in} = V _{DD} or 0 | "0" Level | V _{OL} | 5.0
10
15 | _
_
_ | 0.05
0.05
0.05 | _
_
_ | 0
0
0 | 0.05
0.05
0.05 | _
_
_ | 0.05
0.05
0.05 | Vdc | | $V_{in} = 0$ or V_{DD} | "1" Level | V _{OH} | 5.0
10
15 | 4.95
9.95
14.95 | _
_
_ | 4.95
9.95
14.95 | 5.0
10
15 | _
_
_ | 4.95
9.95
14.95 | _
_
_ | Vdc | | Input Voltage $(V_O = 4.5 \text{ or } 0.5 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$ | "0" Level | V _{IL} | 5.0
10
15 | _
_
_ | 1.5
3.0
4.0 | _
_
_ | 2.25
4.50
6.75 | 1.5
3.0
4.0 | _
_
_ | 1.5
3.0
4.0 | Vdc | | $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$
$(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$
$(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$ | "1" Level | V _{IH} | 5.0
10
15 | 3.5
7.0
11 | _
_
_ | 3.5
7.0
11 | 2.75
5.50
8.25 | _
_
_ | 3.5
7.0
11 | _
_
_ | Vdc | | Output Drive Current $ (V_{OH} = 2.5 \text{ Vdc}) $ $ (V_{OH} = 4.6 \text{ Vdc}) $ $ (V_{OH} = 9.5 \text{ Vdc}) $ $ (V_{OH} = 13.5 \text{ Vdc}) $ | Source | I _{ОН} | 5.0
5.0
10
15 | - 3.0
- 0.64
- 1.6
- 4.2 | _
_
_
_ | - 2.4
- 0.51
- 1.3
- 3.4 | - 4.2
- 0.88
- 2.25
- 8.8 | _
_
_
_ | - 1.7
- 0.36
- 0.9
- 2.4 | _
_
_
_ | mAdc | | $(V_{OL} = 0.4 \text{ Vdc})$
$(V_{OL} = 0.5 \text{ Vdc})$
$(V_{OL} = 1.5 \text{ Vdc})$ | Sink | l _{OL} | 5.0
10
15 | 0.64
1.6
4.2 | - | 0.51
1.3
3.4 | 0.88
2.25
8.8 | _ | 0.36
0.9
2.4 | _
_
_ | mAdc | | Input Current | | I _{in} | 15 | | ± 0.1 | _ _ | ±0.00001 | ± 0.1 | _ | ± 1.0 | μAdc | | Input Capacitance (V _{in} = 0) | | C _{in} | | | - | 8 | 5.0 | 7.5 | _ | ı | pF | | Quiescent Current
(Per Package) | | IDD | 5.0
10
15 | | 1.0
2.0
4.0 | _
_
_ | 0.002
0.004
0.006 | 1.0
2.0
4.0 | _
_
_ | 30
60
120 | μAdc | | Total Supply Current ^{(5.) (6} (Dynamic plus Quiesc Per Package) (C _L = 50 pF on all outp buffers switching) | ent, | l _T | 5.0
10
15 | | | $I_{T} = (1$ |).8 μΑ/kHz) f
l .6 μΑ/kHz) f
2.4 μΑ/kHz) f | + I _{DD} | | | μAdc | Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. The formulas given are for the typical characteristics only at 25°C. To calculate total supply current at loads other than 50 pF: $$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$ where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.002. # SWITCHING CHARACTERISTICS (7.) (C $_L$ = 50 pF, T_A = 25 $^{\circ}$ C) | Characteristic | Symbol | V _{DD} | Min | Typ ^(8.) | Max | Unit | |---|--|-----------------|------------------|----------------------|-------------------|------| | Output Rise and Fall Time $t_{TLH}, t_{THL} = (1.5 \text{ ns/pF}) \text{ C}_{L} + 25 \text{ ns} \\ t_{TLH}, t_{THL} = (0.75 \text{ ns/pF}) \text{ C}_{L} + 12.5 \text{ ns} \\ t_{TLH}, t_{THL} = (0.55 \text{ ns/pF}) \text{ C}_{L} + 12.5 \text{ ns} \\ \end{cases}$ | t _{TLH} ,
t _{THL} | 5.0
10
15 | _
_
_ | 100
50
40 | 200
100
80 | ns | | Propagation Delay Times** Clock to Q, Q t_{PLH} , $t_{PHL} = (1.7 \text{ ns/pF}) C_L + 90 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.66 \text{ ns/pF}) C_L + 42 \text{ ns}$ t_{PLH} , $t_{PHL} = (0.5 \text{ ns/pF}) C_L + 25 \text{ ns}$ | t _{PLH} ,
t _{PHL} | 5.0
10
15 | _
_
_ | 175
75
50 | 350
150
100 | ns | | Set to Q, Q t_{PLH} , t_{PHL} = (1.7 ns/pF) C_L + 90 ns t_{PLH} , t_{PHL} = (0.66 ns/pF) C_L + 42 ns t_{PLH} , t_{PHL} = (0.5 ns/pF) C_L + 25 ns | | 5.0
10
15 | _
_
_ | 175
75
50 | 350
150
100 | | | Reset to Q, Q $t_{PLH}, t_{PHL} = (1.7 \text{ ns/pF}) C_L + 265 \text{ ns}$ $t_{PLH}, t_{PHL} = (0.66 \text{ ns/pF}) C_L + 67 \text{ ns}$ $t_{PLH}, t_{PHL} = (0.5 \text{ ns/pF}) C_L + 50 \text{ ns}$ | | 5.0
10
15 | _
_
_ | 350
100
75 | 450
200
150 | | | Setup Times | t _{su} | 5.0
10
15 | 140
50
35 | 70
25
17 | _
_
_ | ns | | Hold Times | t _h | 5.0
10
15 | 140
50
35 | 70
25
17 | _
_
_ | ns | | Clock Pulse Width | t _{WH} , t _{WL} | 5.0
10
15 | 330
110
75 | 165
55
38 | _
_
_ | ns | | Clock Pulse Frequency | f _{cl} | 5.0
10
15 | _
_
_ | 3.0
9.0
13 | 1.5
4.5
6.5 | MHz | | Clock Pulse Rise and Fall Time | t _{TLH} , t _{THL} | 5.0
10
15 | | _
_
_ | 15
5.0
4.0 | μs | | Removal Times Set | t _{rem} | 5
10
15 | 90
45
35 | 10
5
3 | _
_
_ | ns | | Reset | | 5
10
15 | 50
25
20 | - 30
- 15
- 10 | _
_
_ | | | Set and Reset Pulse Width | t _{WH} | 5.0
10
15 | 250
100
70 | 125
50
35 | _
_
_ | ns | ^{7.} The formulas given are for the typical characteristics only at 25°C. 8. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. Inputs R and S low. For the measurement of t_{WH} , l/f_{cl} , and P_D the Inputs J and K are kept high. Figure 1. Dynamic Signal Waveforms (J, K, Clock, and Output) Figure 2. Dynamic Signal Waveforms (Set, Reset, Clock, and Output) #### PACKAGE DIMENSIONS #### NOTES: - NOTES: 1 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. - DIMENSION B DOES NOT INCLUDE MOLD FLASH. ROUNDED CORNERS OPTIONAL. | | INC | HES | MILLIN | IETERS | |-----|-------|-------|----------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.740 | 0.770 | 18.80 | 19.55 | | В | 0.250 | 0.270 | 6.35 | 6.85 | | С | 0.145 | 0.175 | 3.69 | 4.44 | | D | 0.015 | 0.021 | 0.39 | 0.53 | | F | 0.040 | 0.70 | 1.02 | 1.77 | | G | 0.100 | BSC | 2.54 BSC | | | Н | 0.050 | BSC | 1.27 BSC | | | J | 0.008 | 0.015 | 0.21 | 0.38 | | K | 0.110 | 0.130 | 2.80 | 3.30 | | L | 0.295 | 0.305 | 7.50 | 7.74 | | M | 0° | 10 ° | 0° | 10 ° | | S | 0.020 | 0.040 | 0.51 | 1.01 | ⊕ 0.25 (0.010) M T B S A S - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. - PER SIDE. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | MILLIN | IETERS | INC | HES | |--------|---|---|--| | MIN | MAX | MIN | MAX | | 9.80 | 10.00 | 0.386 | 0.393 | | 3.80 | 4.00 | 0.150 | 0.157 | | 1.35 | 1.75 | 0.054 | 0.068 | | 0.35 | 0.49 | 0.014 | 0.019 | | 0.40 | 1.25 | 0.016 | 0.049 | | 1.27 | BSC | 0.050 BSC | | | 0.19 | 0.25 | 0.008 | 0.009 | | 0.10 | 0.25 | 0.004 | 0.009 | | 0° | 7° | 0° | 7° | | 5.80 | 6.20 | 0.229 | 0.244 | | 0.25 | 0.50 | 0.010 | 0.019 | | | MIN
9.80
3.80
1.35
0.35
0.40
1.27
0.19
0.10
0°
5.80 | 9.80 10.00
3.80 4.00
1.35 1.75
0.35 0.49
0.40 1.25
1.27 BSC
0.19 0.25
0° 7°
5.80 6.20 | MIN MAX MIN 9.80 10.00 0.386 3.80 4.00 0.150 1.35 1.75 0.054 0.35 0.49 0.014 0.40 1.25 0.016 1.27 BSC 0.05(0.05(0.19 0.25 0.008 0.10 0.25 0.004 0° 7° 0° 5.80 6.20 0.229 | #### PACKAGE DIMENSIONS ### SOEIAJ-16 **F SUFFIX** PLASTIC EIAJ SOIC PACKAGE CASE 966-01 ISSUE O # NOTES: - JIES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS DAND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE - MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) DAMIDAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMIDAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018). | | MILLIN | IETERS | INC | HES | |----------------|--------|--------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | | 2.05 | | 0.081 | | Α ₁ | 0.05 | 0.20 | 0.002 | 0.008 | | b | 0.35 | 0.50 | 0.014 | 0.020 | | С | 0.18 | 0.27 | 0.007 | 0.011 | | D | 9.90 | 10.50 | 0.390 | 0.413 | | E | 5.10 | 5.45 | 0.201 | 0.215 | | е | 1.27 | BSC | 0.050 BSC | | | HE | 7.40 | 8.20 | 0.291 | 0.323 | | L | 0.50 | 0.85 | 0.020 | 0.033 | | LE | 1.10 | 1.50 | 0.043 | 0.059 | | M | 0 ° | 10 ° | 0 ° | 10° | | Q_1 | 0.70 | 0.90 | 0.028 | 0.035 | | Z | | 0.78 | | 0.031 | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. #### **PUBLICATION ORDERING INFORMATION** #### NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada ### N. American Technical Support: 800–282–9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor - European Support German Phone: (+1) 303-308-7140 (M-F 1:00pm to 5:00pm Munich Time) Email: ONlit-german@hibbertco.com French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com English Phone: (+1) 303-308-7142 (M-F 12:00pm to 5:00pm UK Time) Email: ONlit@hibbertco.com #### EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, England, Ireland #### CENTRAL/SOUTH AMERICA: **Spanish Phone**: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001-800-4422-3781 Email: ONlit-asia@hibbertco.com JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549 Phone: 81-3-5740-2745 Email: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.