Document Title

1Mx8 bit Low Power and Low Voltage CMOS Static RAM

Revision History

Revision No.	History	Draft Date	<u>Remark</u>
0.0	Initial draft	October 31, 2002	Preliminary
0.1	Revised - Deleted 44-TSOP2-400R package type.	December 11, 2002	Preliminary
1.0	Finalized - Changed Icc2 from 40mA to 30mA - Changed Isв1(industrial) from 30μA to 15μA - Changed Isв1(Automotive) from 40μA to 25μA	September 16, 2003	Final
		3	

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to yourquestions about device. If you have any questions, please contact the SAMSUNG branch offices.

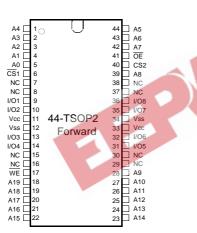
CMOS SRAM

1Mx8 bit Low Power and Low Voltage full CMOS Static RAM

FEATURES

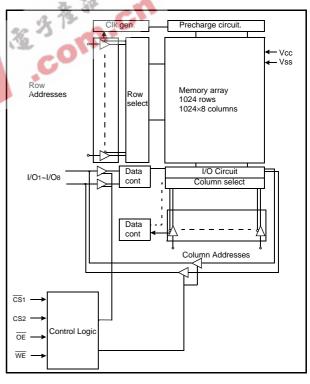
- Process Technology: Full CMOS
- Organization: 1M x8
- Power Supply Voltage: 2.7~3.6V
- Low Data Retention Voltage: 1.5V(Min)
- Three state outputs
- Package Type: 44-TSOP2-400F

GENERAL DESCRIPTION


The K6X8008T2B families are fabricated by SAMSUNG's advanced full CMOS process technology. The families support various operating temperature range for user flexibility of system design. The families also support low data retention voltage for battery back-up operation with low data retention current.

PRODUCT FAMILY

				Power Di	ssipation		
Product Family	Operating Temperature	Vcc Range	Speed	Standby (Isв1, Max)	Operating (Icc2, Max)	PKG Type	
K6X8008T2B-F	Industrial(-40~85°C)	2.7~3.6V	551)/70ns	15μΑ	30mA	44-TSOP2-400F	
K6X8008T2B-Q	Automotive(-40~125°C)	2.7~3.00	70ns	25μΑ	JUIIA	44-1301 2-4001	


1. This parameter is measured with 50pF test load (Vcc=3.0~3.6V).

PIN DESCRIPTION

Name	Function	Name	Function
CS1, CS2	Chip Select Inputs	Vcc	Power
OE	Output Enable Input	Vss	Ground
WE	Write Enable Input	A0~A19	Address Inputs
I/O1~I/O8	Data Inputs/Outputs	NC	No Connect

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Industrial Tempe	rature Products(-40~85°C)	Automotive Temperature Products(-40~125°C)				
Part Name	Part Name Function		Function			
K6X8008T2B-TF55 ¹⁾ K6X8008T2B-TF70	44-TSOP2-F, 55ns, LL 44-TSOP2-F, 70ns, LL	K6X8008T2B-TQ70	44-TSOP2-F, 70ns, L			

1. Operating voltage range is 3.0~3.6V

FUNCTIONAL DESCRIPTION

CS ₁	CS ₂	OE	WE	I/O 1~8	Mode	Power
н	Х	Х	Х	High-Z	Deselected	Standby
х	L	Х	Х	High-Z	Deselected	Standby
L	Н	Н	Н	High-Z	Output Disabled	Active
L	Н	L	Н	Dout	Read	Active
L	Н	Х	L	Din	Write	Active

ABSOLUTE MAXIMUM RATINGS¹⁾

L H X	L	Din	Write		Active				
ote: X means don't care. (Must be low or high state)									
ltem	Symbol	R	atings	Unit	Remark				
Voltage on any pin relative to Vss	VIN, VOUT	-0.2 to Vcc-	-0. <mark>3 (max. 3.9V)</mark>	V	-				
Voltage on Vcc supply relative to Vs	s Vcc	-0.:	2 to 3.9	V	-				
Power Dissipation	PD		1.0	W	-				
Storage temperature	Тѕтс	-65	to 150	°C	-				
Operating Temperature	Та	-4() to 85	°C	K6X8008T2B-F				
Operating remperature	14	-40	to 125	°C	K6X8008T2B-Q				

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CMOS SRAM

RECOMMENDED DC OPERATING CONDITIONS¹⁾

ltem	Symbol	Product	Min	Тур	Max	Unit
Supply voltage	Vcc	K6X8008T2B Family	2.7	3.0/3.3	3.6	V
Ground	Vss	All Family	0	0	0	V
Input high voltage	Vih			Vcc+0.32)	V	
Input low voltage	VIL	K6X8008T2B Family	-0.3 ³⁾	-	0.6	V

Note:

1. Industrial Product: TA=-40 to 85°C, otherwise specified.

Automotive Product: TA=-40 to 125°C, otherwise specified.

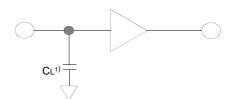
2. Overshoot: Vcc+3.0V in case of pulse width ≤30ns.

Undershoot: -3.0V in case of pulse width ≤30ns.
Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	70	10	pF

DC AND OPERATING CHARACTERISTICS


	CIO VIO=UV		10		р⊦		
		cn .					
Symbol	Test Conditions		Min	Тур	Max	Unit	
ΙLI	VIN=Vss to Vcc		-1	-	1	μA	
Ilo	CS1=VIH, CS2=VIL or OE=VIH or WE=VIL, VIO=Vss to	31=VIH, CS2=VIL or OE=VIH or WE=VIL, VIO=Vss to Vcc				μΑ	
ICC1				-	3	mA	
ICC2	Cycle time=Min, Iю=0mA, 100% duty, CS1=ViL, CS2=ViH, VIN=ViL or ViH			-	30	mA	
VOL	IOL = 2.1mA		-	-	0.4	V	
Vон	Іон = -1.0mA		2.4	-	-	V	
ISB	CS1=VIH, CS2=VIL, Other inputs=VIH or VIL				0.4	mA	
ISB1	Other input =0~Vcc, 1) $\overline{CS}_1 \ge Vcc-0.2V$, $\overline{CS}_2 \ge Vcc-0.2V$ (\overline{CS}_1 controlled) or 2) $0V \le CS_2 \le 0.2V$ (\overline{CS}_2 controlled)	K6X8008T2B-F K6X8008T2B-Q	-	-	15 25	μA	
	IG CH. Symbol ILI ILO ICC1 ICC2 VOL VOH ISB	IOO% tested.IG CHARACTERISTICSSymbolTest ConditionsILIVIN=Vss to VccILO $\overline{CS}1=VIH$, $CS2=VIL$ or $\overline{OE}=VIH$ or $\overline{WE}=VIL$, $VIO=Vss$ toIcc1Cycle time=1µs, 100%duty, IrO=0mA, $\overline{CS}1\leq0.2V$, CSIcc1Cycle time=Min, IrO=0mA, 100% duty, $\overline{CS}1=VIL$, $CS2$ Icc2Cycle time=Min, IrO=0mA, 100% duty, $\overline{CS}1=VIL$, $CS2$ VIN=VIL or VIHVol.VOLIOL = 2.1mAVOHIOH = -1.0mAISB $\overline{CS}1=VIH$, $CS2=VIL$, Other inputs=VIH or VILOther input =0~Vcc, 1) $\overline{CS}1\geq Vcc-0.2V$, $CS2\geq Vcc-0.2V$ ($\overline{CS}1$ controlled) or	IO0% tested. IG CHARACTERISTICS Symbol Test Conditions ILI VIN=Vss to Vcc ILO $\overline{CS}_1=VIH$, $\overline{CS}_2=VIL$ or $\overline{OE}=VIH$ or $\overline{WE}=VIL$, $VIO=Vss$ to Vcc Icc1 Cycle time=1µs, 100%duty, IrO=0mA, $\overline{CS}_1\leq 0.2V$, $CS_2\geq Vcc-0.2V$, $VIN\leq 0.2V$ or $VIN\geq Vcc-0.2V$ Icc2 Cycle time=Min, IrO=0mA, 100% duty, $\overline{CS}_1=VIL$, $CS_2=VIH$, $VIN=VIL$ or VIH VoL IoL = 2.1mA VOH IoH = -1.0mA ISB $\overline{CS}_1=VIH$, $CS_2=VIL$, Other inputs=VIH or VIL Other input =0~Vcc, 1) $\overline{CS}_1\geq Vcc-0.2V$, $CS_2\geq Vcc-0.2V$ (\overline{CS}_1 controlled) or	IO0% tested.IG CHARACTERISTICSSymbolTest ConditionsMinILiVIN=Vss to Vcc-1ILo $\overline{CS}_1=VIH, CS_2=VIL \text{ or } \overline{OE}=VIH \text{ or } \overline{WE}=VIL, VIO=Vss to Vcc-1ICc1\overline{Cycle time=1}\mu s, 100\%duty, IrO=0mA, \overline{CS}_1\leq 0.2V, CS_2\geq Vcc-0.2V, VIN=0.2V \text{ or } VIN\geq Vcc-0.2V-ICc2Cycle time=Min, IrO=0mA, 100\% duty, \overline{CS}_1=VIL, CS_2=VIH, VIN=VIL OF VIH-VOLIOL = 2.1mA-VOHIOH = -1.0mA2.4ISB\overline{CS}_1=VIH, CS_2=VIL, Other inputs=VIH or VIL-ISB1Other input =0~Vcc, 1) CS_1\geq Vcc-0.2V, CS_2>Vcc-0.2V (CS_1 controlled) orK6X8008T2B-F$	IO00% tested. IG CHARACTERISTICS Symbol Test Conditions Min Typ ILI VIN=Vss to Vcc -1 - ILO CS1=VIH, CS2=VIL or OE=VIH or WE=VIL, VIO=Vss to Vcc -1 - ICC1 Cycle time=1µs, 100%duty, Iro=0mA, CS1≤0.2V, CS2≥Vcc-0.2V, VIN≤0.2V or VIN≥Vcc-0.2V - - ICc2 Cycle time=Min, Iro=0mA, 100% duty, CS1=VIL, CS2=VIH, VIN=VIL or VIH - - VOL IOL = 2.1mA - - VOH IOH = -1.0mA 2.4 - ISB CS1=VIH, CS2=VIL, Other inputs=VIH or VIL - - ISB1 Other input =0~Vcc, 1) CS1≥Vcc-0.2V, CS2≥Vcc-0.2V (CS1 controlled) or K6X8008T2B-F -	IOO% tested.IG CHARACTERISTICSSymbolTest ConditionsMinTypMaxILiVIN=Vss to Vcc-1-1ILo $\overline{CS}_1=V H, CS2=V L \text{ or } \overline{OE}=V H \text{ or } WE=V L, V 0=Vss to Vcc-1-1ICc1Cycle time=1µs, 100%duty, I/0=0mA, \overline{CS}_1\leq 0.2V, CS2\geq Vcc-0.2V,3Icc1Cycle time=Min, I/0=0mA, 100% duty, \overline{CS}_1=V L, CS2=V H,30VolIoL = 2.1 mA0.4VoHIoH = -1.0mA2.4ISB\overline{CS}_1=V H, CS2=V L, Other inputs=V H or V L0.4Cher input =0~Vcc,1) \overline{CS}_1\geq Vcc-0.2V, CS2\geq Vcc-0.2V (\overline{CS}_1 controlled) orK6X8008T2B-F-15$	

CMOS SRAM

AC OPERATING CONDITIONS

TEST CONDITIONS(Test Load and Input/Output Reference) Input pulse level: 0.4 to 2.2V Input rising and falling time: 5ns Input and output reference voltage: 1.5V Output load(see right): CL=100pF+1TTL CL=50pF+1TTL

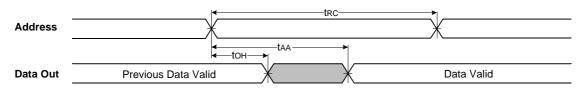
1.Including scope and jig capacitance

AC CHARACTERISTICS (Vcc=2.7~3.6V, Industrial product: TA=-40 to 85°C, Automotive product: TA=-40 to 125°C)

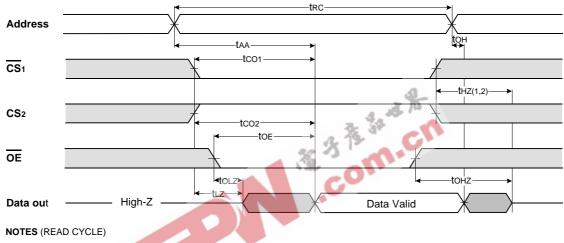
				Speed	l Bins		
Parameter List		Symbol	55	ns ¹⁾	70	Units	
			Min	Max	Min	Max	
	Read Cycle Time	tRC	55	-	70	-	ns
	Address Access Time	taa	-	55	-	70	ns
	Chip Select to Output	tco	-	55	-	70	ns
	Output Enable to Valid Output	tOE	-	25	-	35	ns
Read	Chip Select to Low-Z Output	t∟z	10		10	-	ns
	Output Enable to Low-Z Output	toLz	5 🚽	18.14	5	-	ns
	Chip Disable to High-Z Output	tHZ	0	20	0	25	ns
	Output Disable to High-Z Output	toнz	0	20	0	25	ns
	Output Hold from Address Change	toн	10	-	10	-	ns
	Write Cycle Time	twc	55	-	70	-	ns
	Chip Select to End of Write	tcw	45	-	60	-	ns
	Address Set-up Time	tAS	0	-	0	-	ns
	Address Valid to End of Write	taw	45	-	60	-	ns
Write	Write Pulse Width	twp	40	-	50	-	ns
White	Write Recovery Time	twR	0	-	0	-	ns
	Write to Output High-Z	twнz	0	20	0	20	ns
	Data to Write Time Overlap	tDW	25	-	30	-	ns
	Data Hold from Write Time	tDH	0	-	0	-	ns
	End Write to Output Low-Z	tow	5	-	5	-	ns

1. Voltage range is 3.0V~3.6V for industrial product.

DATA RETENTION CHARACTERISTICS

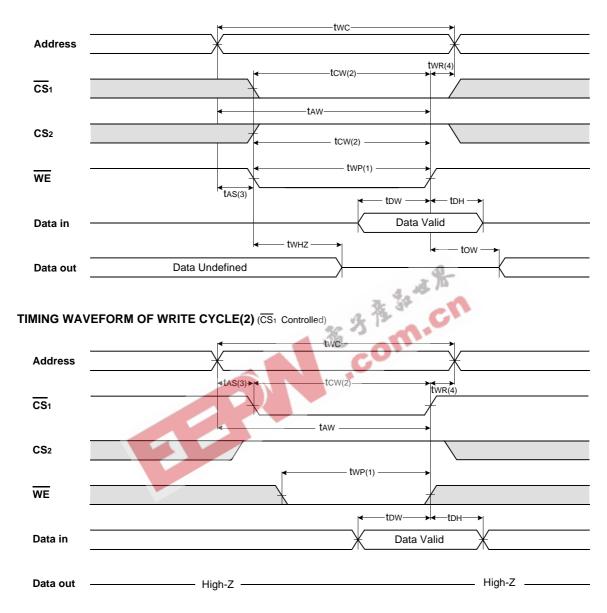

Item	Symbol	Test Condition		Min	Тур	Max	Unit
Vcc for data retention	Vdr	CS1≥Vcc-0.2V ¹⁾	1.5	-	3.6	V	
Data retention current	I DR	Vcc=1.5V, CS1≥Vcc-0.2V ¹⁾	K6X8008T2B-F		_	6	μA
Data retention current	IDK	vcc=1.5v, co1≥vcc-0.2v /	K6X8008T2B-Q		-	10	μΛ
Data retention set-up time	tSDR	See data retention waveform	0	-	-	ms	
Recovery time	trdr		5	-	-	1115	

1. $\overline{CS}_1 \ge Vcc-0.2V, CS_2 \ge Vcc-0.2V(\overline{CS}_1 \text{ controlled}) \text{ or } CS_2 \ge Vcc-0.2V(CS_2 \text{ controlled}).$



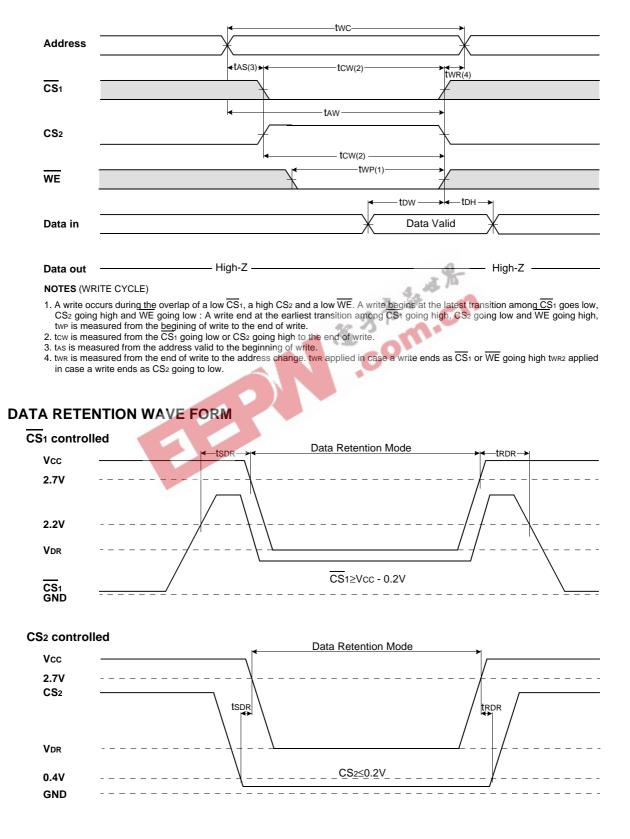
TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS1=OE=VIL, CS2=WE=VIH)



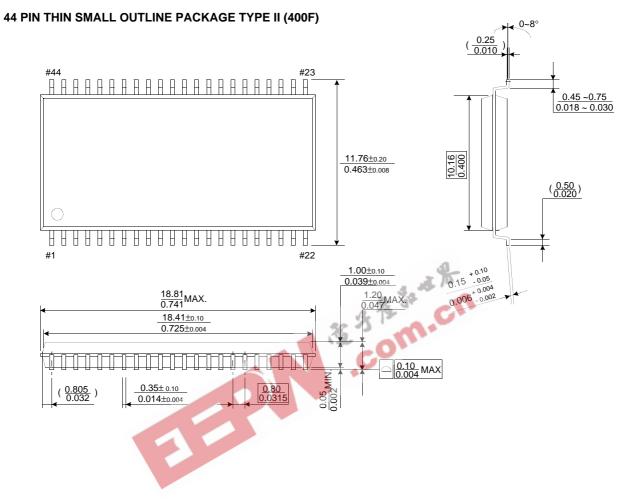
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)

- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.



TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(3) (CS2 Controlled)



SAMSUNG

CMOS SRAM

PACKAGE DIMENSIONS

