

2-PHASE DD MOTOR DRIVER

The kA83I0 is a monolithic integrated circuit for 2-phase full wave linear DD motor driving. This IC contains hall AMP, control circuit, CW/CC\N circuit, thermal shutdown circuit and motor drivers.

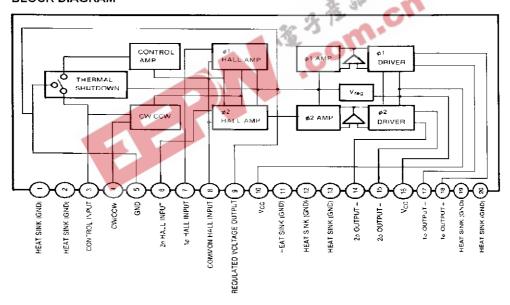
FUNCTION

- TSD CTL/AMP CW/CCW
- HALL AMP Driver & AMP

FEATURES

- · Incorporates rotation direction switching function.
- With regulated power supply for hall device feeding.
- High output current-control current ratio.
- · High power dissipation.
- Built-in TSD (Thermal Shut Down) circuit.

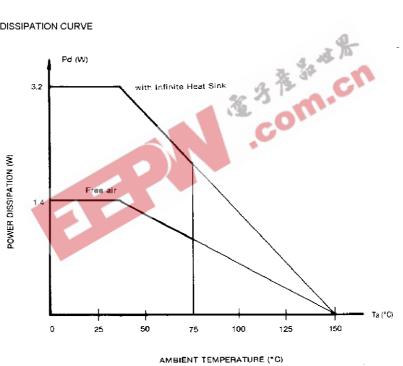
APPLICATION


- · VCRs, video disk players
- · Compact disk players
- Tape recorders

ORDERING IN FORMATION

Device	Package	Operating Temperature
KA8310	20-ZIP-325	-20°(~+75°(

BLOCK DIAGRAM

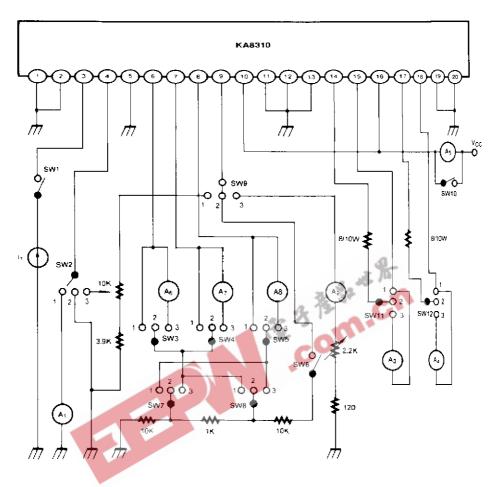


ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit	Remark	
Supply Voltage	Vcc	20	V		
Maximum Output Current (1)	l ₀ 1	2.4	A	No Signal	
Maximum Output Current (2)	l _o 2	1.6		v	
Hall Input Voltage	V _H	6	V	DC	
Pin 3 Current	l ₃	1	mA		
Pin 4 Voltage	V ₄	VREG	V		
Output Current	I _{REG}	40	mA		
Pin 16 Voltage	V ₁₆	VCC	٧	V _{CC} ≥V16	
AMP Common Input Voltage	V _{com}	VREG-1.0	٧		
Hall Device Frequency	./HALL	1	KHz		
Operating Voltage Range	V _{OPR}	7.2~20	٧		
Junction Temperature	TJ	150	Ĵ		
Operating Temperature	T _{OPR}	-20~+75	r		
Storage Temperature	T _{STG}	-40~+150	r		

POWER DISSIPATION CURVE

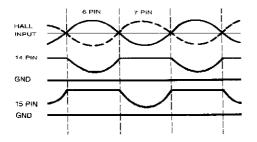
Page: 2 (KA8310)

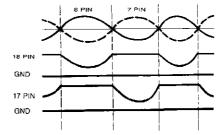


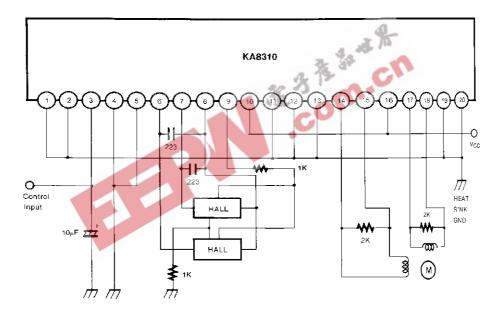
ELECTRICAL CHARACTERISTICS (V_{CC} =12V, T_A =25 $^{\circ}$ C)

Characteristics	Symbol	Test Condition	Min	Тур	Wax	Unit
Quiescent Current	IQ	I ₁ =QμA	4.5	6.5	8.5	mA
Regulated Voltage (1)	V_{REG1}	I ₁ =Ο <i>μ</i> Α	6.0	6.7	7.4	٧
Regulated Voltage (2)	V _{REG2}	I ₁ =QμΛ A ₂ =10mA	6.0	6.7	7.4	٧
Regulated Voltage (3)	V _{REG3}	I ₁ =Q <i>μ</i> A A ₂ =30mA	6.0	6.7	7.4	٧
Controllnput Voltage	V _{CT1}	I ₁ 10 <i>μ</i> Λ	1.2	1.35	1.5	٧
CW/CCW Output Current	14	I ₁ =0 <i>μ</i> Λ	200	410	600	μΛ
CW/CCW Threshold Voltage (1)	VT ₁	V ₆ =V ₇ =3.1V V ₈ =3.4V I₁=50μV	2.5	_	-	٧
CW/CCW Threshold Voltage (1)	VT ₂	V ₆ =V ₇ =3.1V V ₈ =3.4V I ₁ =50µA	2.5	0		V
Current Gain (1)	G ₁	V_6 =3.1V V_8 =3.4V I_1 =100 μ A G_1 = I_{OUT2} I_1	4000	4700	5500	
Current Gain (2)	G ₂	V ₆ =3,4V V ₈ =3.1V I₁=100μA G₂=I _{0∪12} /I₁	4000	4700	5500	
φ1, φ2 Current Ratio	R	R=G ₁ /G ₂	0.8	1	1.2	
Output Current (1)	lout1	V ₆ =3.4V V ₈ =3.1V I₁=180μ∧	750	890	1150	mA
Output Current (2)	l _{out2}	V ₇ =3.4V V ₈ =3.1V I₁=180μA	750	890	1150	mA

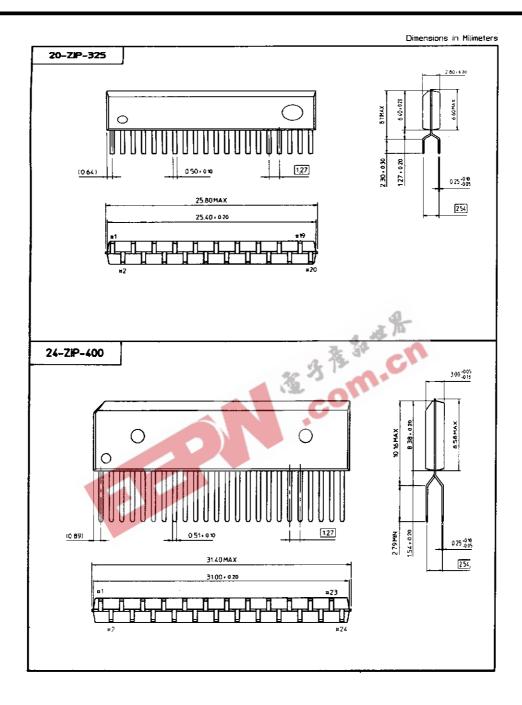
TEST CIRCUIT


TEST METHOD (Vcc=12V)


TEST		Switch Condition							Test					
Characteristic	Condition	SW1	SW2	sw3	SW4	SW5	sw6	SW7	SW8	sw9	SW10	SW11	SW12	Point
Quiescent Current	I ₁ =Q <i>μ</i> Λ	1	2	2	2	2	2	2	2	2	2	2	2	A5
Regulated Voltage (1)	Ι ₁ =ΟμΛ	1	2	2	2	2	2	2	2	2	1	2	2	Pin9
Regulated Voltage (2)	I ₁ =Q <i>μ</i> A A ₂ =10mA	1	2	2	2	2	2	2	2	3	1	2	2	Pin9
Regulated Voltage (3)	I ₁ =QμΛ A ₂ =30mA	1	2	2	2	2	2	2	2	3	1	2	2	Pin9
Control Input Voltage	I ₁ 10μΑ	1	2	2	2	2	2	2	2	2	1	2	2	Pin3
CW/CCW Output Current	I ₁ =Ο <i>μ</i> Α	1	1	2	2	2	2	2	2	2	1	2	2	A1
CW/CCW Threshold Voltage (1)	V ₆ =V ₇ =3.1V	1	3	1	1	1	1	3	3	1	1	3	2	Pin4
	V ₈ =3.4V I₁=50 <i>µ</i> V	'	3	'			'	3	3	'	'	٦	2	(A ₃)
	V ₆ =V ₇ =3.1V													
CW/CCW Threshold Voltage (2)	V ₈ =3.4V	1	3	1	1	1	1	3	3	1	1	2	3	Pin4
Voltage (2)	I ₁ =50μA									9_				(A ₄)
	V ₆ =3.1V							.4.	18	lry.				
Current Gain (1)	V ₈ =3.4V	1	2	1	2	1	1 3	3	3	2	1	3	2	A ₃ /I ₁
	I ₁ =100μA					-	47	3		C 1				
Current Gain (2)	V ₆ =3.4V							1	11.					
	V ₈ =3.1V	1	2	2	1	1	-1	3	3	2	1	2	3	A ₄ /I ₁
	I ₁ =100μΛ													
φ1, o2 Current Ratio)											
Output Current (1)	V ₆ =3.4V		\triangle											
	V ₈ =3.1V	1	2	1	2	1	1	1	1	2	1	3	2	A3
	I ₁ =180µA													
Output Current (2)	V ₇ =3.4V							l . ¯						
Supar Surrent (2)	V ₈ =3.1V	1	2	2	1	1	1	1	1	2	1	2	3	A4
	I ₁ =180 <i>µ</i> A													


APPLICATION INFORMATION

OUTPUT WAVE FORM (4 PIN GND)



APPLICATION CIRCUIT

^{*}The Application of HALL BIAS Pins must to follow above circuits.

