
February 2000

.M4051 Precision Micropower Shunt Voltage Reference

LM4051 Precision Micropower Shunt Voltage Reference

General Description

Ideal for space critical applications, the LM4051 precision voltage reference is available in the sub-miniature (3 mm x 1.3 mm) SSOT-23 surface-mount package. The LM4051's advanced design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4051 easy to use. Further reducing design effort is the availability of a fixed (1.225V) and adjustable reverse breakdown voltage. The minimum operating current is 60 μ A for the LM4051-1.2 and the LM4051-ADJ. Both versions have a maximum operating current of 12 mA.

The LM4051 comes in three grades (A, B, and C). The best grade devices (A) have an initial accuracy of 0.1%, while the B-grade have 0.2% and the C-grade 0.5%, all with a tempco of 50 ppm/°C guaranteed from -40° C to 125° C.

The LM4051 utilizes fuse and zener-zap trim of reference voltage during wafer sort to ensure that the prime parts have an accuracy of better than $\pm 0.1\%$ (A grade) at 25°C.

Features

- Small packages: SSOT-23
- No output capacitor required
- Tolerates capacitive loads
- Reverse breakdown voltage options of 1.225V and adjustable

Key Specifications (LM4051-1.2)

Output voltage tolerance

 (A grade, 25°C)
 ±0.1%(max)

 Low output noise
 (10 Hz to 10kHz)
 20µV_{rms}

 Wide operating current range

 60µA to 12mA

 Industrial temperature range
 (tempco guaranteed from
 -40°C to +85°C
 (temperature coefficient
 50 ppm/°C (max)

Applications

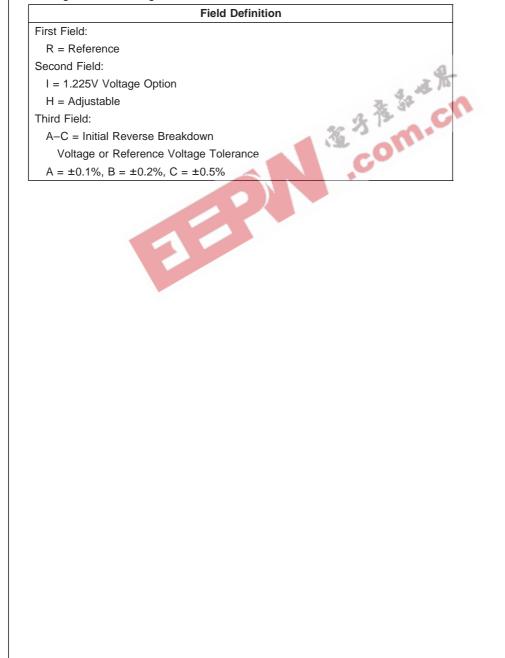
- Portable, Battery-Powered Equipment
- Data Acquisition Systems
- Instrumentation
- Process Control
- Energy Management
- Automotive and Industrial
- Precision Audio Components
- Base Stations
- Battery Chargers
- Medical EquipmentCommunication
- Communication

Connection Diagrams

*This pin must be left floating or connected to pin 2.

Top View See NS Package Number MF03A

SSOT-23



Ordering Information

Reverse Breakdown Voltage Tolerance at 25°C and Average Reverse Breakdown Voltage Temperature Coefficient	LM4051 Supplied as 1000 Units, Tape and Reel	LM4051 Supplied as 3000 Units, Tape and Reel	Part Marking
±0.1%, 50 ppm/°C max (A grade)	LM4051AIM3-1.2	LM4051AIM3X-1.2	RIA
	LM4051AIM3-ADJ	LM4051AIM3X-ADJ	RHA
±0.2%, 50 ppm/°C max (B grade)	LM4051BIM3-1.2	LM4051BIM3X-1.2	RIB
	LM4051BIM3-ADJ	LM4051BIM3X-ADJ	RHB
±0.5%, 50 ppm/°C max (C grade)	LM4051CIM3-1.2	LM4051CIM3X-1.2	RIC
	LM4051CIM3-ADJ	LM4051CIM3X-ADJ	RHC

SOT-23 Package Marking Information

Only three fields of marking are possible on the SSOT-23's small surface. This table gives the meaning of the three fields.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Reverse Current	20 mA
Forward Current	10 mA
Maximum Output Voltage	
(LM4051-ADJ)	15V
Power Dissipation ($T_A = 25^{\circ}C$) (Note 2)	
M3 Package	280 mW
Storage Temperature	–65°C to +150°C
Lead Temperature	
M3 Packages	
Vapor phase (60 seconds)	+215°C
Infrared (15 seconds)	+220°C

ESD Susceptibility Human Body Model (Note 3) 2 kV Machine Model (Note 3) 200V See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Operating Ratings(Notes 1, 2)

Temperature Range	$(T_{min} \le T_A \le T_{max})$
Industrial Temperature Range	$-40^{\circ}C \le T_{A} \le +85^{\circ}C$
Reverse Current	
LM4051-1.2	60 µA to 12 mA
LM4051-ADJ	60 µA to 12 mA
Output Voltage Range	
LM4051-ADJ	1.24V to 10V
Output Voltage Range	·

LM4051-1.2 Electrical Characteristics

Boldface limits apply for T_A = T_J = T_{MIN}to T_{MAX}; all other limits $T_A = T_J = 25^{\circ}$ C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of ±0.1%, ±0.2% and ±0.5% respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4051AIM3 (Limits) (Note 5)	LM4051BIM3 (Limits) (Note 5)	LM4051CIM3 Limts (Note 5)	Units (Limit)
V _R	Reverse Breakdown Voltage	I _R = 100 μA	1.225	36	n.		V
	Reverse Breakdown Voltage	I _R = 100 μA		±1.2	±2.4	±6	mV (max)
	Tolerance (Note 6)			±5.2	±6.4	±10.1	mV (max)
I _{RMIN}	Minimum Operating		39				μΑ
	Current			60	60	60	µA (max)
				65	65	65	µA (max)
$\Delta V_R / \Delta T$	Average Reverse	I _R = 10 mA	±20				ppm/°C
	Breakdown	$I_R = 1 \text{ mA}$	±15				ppm/°C
-	Voltage Temperature Coefficient (Note 6)	$I_R = 100 \ \mu A$ $\Delta T = -40^{\circ}C \text{ to } 125^{\circ}C$	±15	±50	±50	±50	ppm/°C (max)
$\Delta V_R / \Delta I_R$	Reverse Breakdown Voltage Change with Operating Current Change	$I_{RMIN} \le I_R \le 1 \text{ mA}$	0.3				mV
				1.1	1.1	1.1	mV (max)
				1.5	1.5	1.5	mV (max)
		$1 \text{ mA} \le I_R \le 12 \text{ mA}$	1.8				mV
				6.0	6.0	6.0	mV (max)
				8.0	8.0	8.0	mV (max)
Z _R	Reverse Dynamic Impedance	I _R = 1 mA, f = 120 Hz	0.5				Ω
e _N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz	20				μV_{rms}
ΔV_R	Reverse Breakdown Voltage Long Term Stability (Note 9)	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA	120				ppm
V _{HYST}	Output Hysteresis (Note 10)	$\Delta T = -40^{\circ}C$ to $125^{\circ}C$	0.36				mV/V

LM4051-ADJ (Adjustable) Electrical Characteristics

Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_J = 25^{\circ}$ C unless otherwise specified (SSOT-23, see (Note 7) , $I_{RMIN} \le I_R \le 12$ mA, $V_{REF} \le V_{OUT} \le 10$ V. The grades A, B and C designate initial Reference Voltage Tolerances of ±0.1%, ±0.2% and ±0.5%, respectively for $V_{OUT} = 5$ V.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4051AIM3 (Note 5)	LM4051BIM3 (Note 5)	LM4051CIM3 (Note 5)	Units (Limit)
V _{REF}	Reference Voltage	I _R = 100 μA, V _{OUT} = 5V	1.212				V
	Reference Voltage Tolerance (Note 6), (Note 8)	I _R = 100 μA, V _{OUT} = 5V		±1.2 ±5.2	±2.4 ±6.4	±6 ±10.1	mV (max) mV (max)
I _{RMIN}	Minimum Operating Current		36	60 65	60 65	65 70	μΑ μΑ (max) μΑ (max)
$\Delta V_{REF} / \Delta I_{R}$	Reference VoltageChange with Operating Current Change	$I_{RMIN} \le I_R \le 1mA$ $V_{OUT} \ge 1.6V$ (Note 7)	0.3	1.1 1.5	1.1 1.5	1.1 1.5	mV mV (max) mV(max)
	Change	$1 \text{ mA} \le I_R \le 12 \text{ mA}$ $V_{OUT} \ge 1.6V(\text{Note 7})$	0.6	6 8	6 8	6 8	mV mV (max) mV (max)
$\Delta V_{REF} / \Delta V_{O}$	Reference Voltage Changewith Output Voltage Change	I _R = 0.1 mA	-1.69	-2.8 -3.5	-2.8 - 3.5	-2.8 - 3.5	mV/V mV/V (max mV/V (max
I _{FB}	Feedback Current		70 5	130 150	130 150	130 150	nA nA (max) nA (max)
$\Delta V_{REF} / \Delta T$	Average ReferenceVoltage Temperature Coefficient (Note 8)	$V_{OUT} = 2.5V$ $I_R = 10mA$ $I_R = 1mA$ $I_R = 100\muA$ $\Delta T = -40^{\circ}C \text{ to } +125^{\circ}C$	20 15 15	±50	±50	±50	ppm/°C ppm/°C ppm/°C (max)
Z _{out}	Dynamic Output Impedance	$I_{R} = 1 \text{ mA},$ f = 120 Hz, $I_{AC} = 0.1 I_{R}$ $V_{OUT} = V_{REF}$ $V_{OUT} = 10V$	0.3 2				Ω Ω
e _N	Wideband Noise	I_R = 100 µA V _{OUT} = V _{REF} 10 Hz ≤ f ≤ 10 kHz	20				μV_{rms}
ΔV _{ref}	Reference Voltage Long Term Stability (Note 9)	t = 1000 hrs, $I_R = 100 \ \mu A$ T = 25°C ±0.1°C	120				ppm
V _{HYST}	Output Hysteresis (Note 10)	$\Delta T = -40^{\circ}C \text{ to } +125^{\circ}C$	0.3				mV/V

Electrical Characteristics (continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $PD_{max} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4051, $T_{Jmax} = 125$ °C, and the typical thermal resistance (θ_{JA}), when board mounted, is 280°C/W for the SSOT-23 package.

Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.

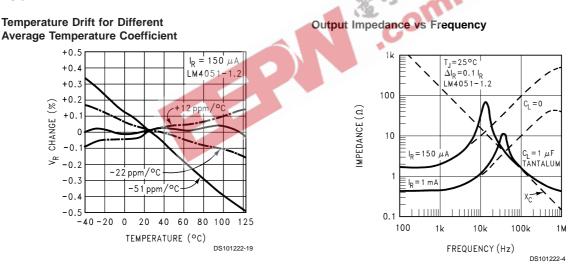
Note 4: Typicals are at $T_J = 25^{\circ}C$ and represent most likely parametric norm.

Note 5: Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL.

Note 6: The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max \Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, $max\Delta T$ is the maximum difference in temperature from the reference point of 25 °C to T MAX or TMIN, and V_R is the reverse breakdown voltage. The total over-temperature tolerance for the different grades in the industrial temperature range where max ΔT =65°C is shown below:

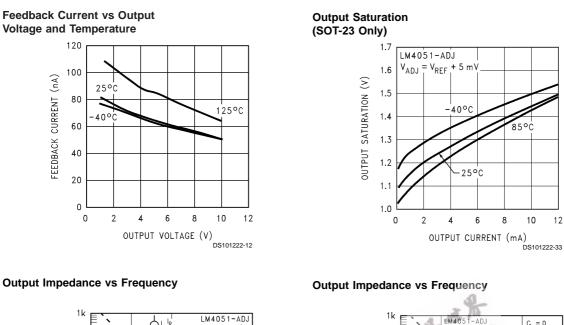
A-grade: ±0.425% = ±0.1% ±50 ppm/°C x 65°C B-grade: ±0.522% = ±0.2% ±50 ppm/°C x 65°C C-grade: ±0.825% = ±0.5% ±50 ppm/°C x 65°C

Therefore, as an example, the A-grade LM4051-1.2 has an over-temperature Reverse Breakdown Voltage tolerance of ±1.2V x 0.425% = ±5.2 mV.

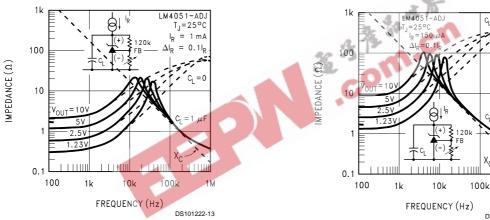

Note 7: When $V_{OUT} \le 1.6V$, the LM4051-ADJ in the SSOT-23 package must operate at reduced I_R . This is caused by the series resistance of the die attach between the die (-) output and the package (-) output pin. See the Output Saturation curve in the Typical Performance Characteristics section.

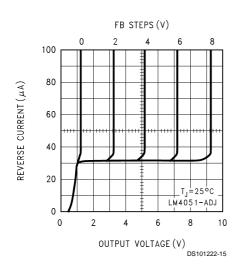
Note 8: Reference voltage and temperature coefficient will change with output voltage. See Typical Performance Characteristics curves.

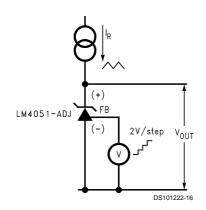
Note 9: Long term stability is V_R @ 25°C measured during 1000 hrs.


Note 10: Thermal hysteresis is defined as the changes in 25°C output voltage before and after cycling the device from -40°C or +125°C.

Typical Performance Characteristics



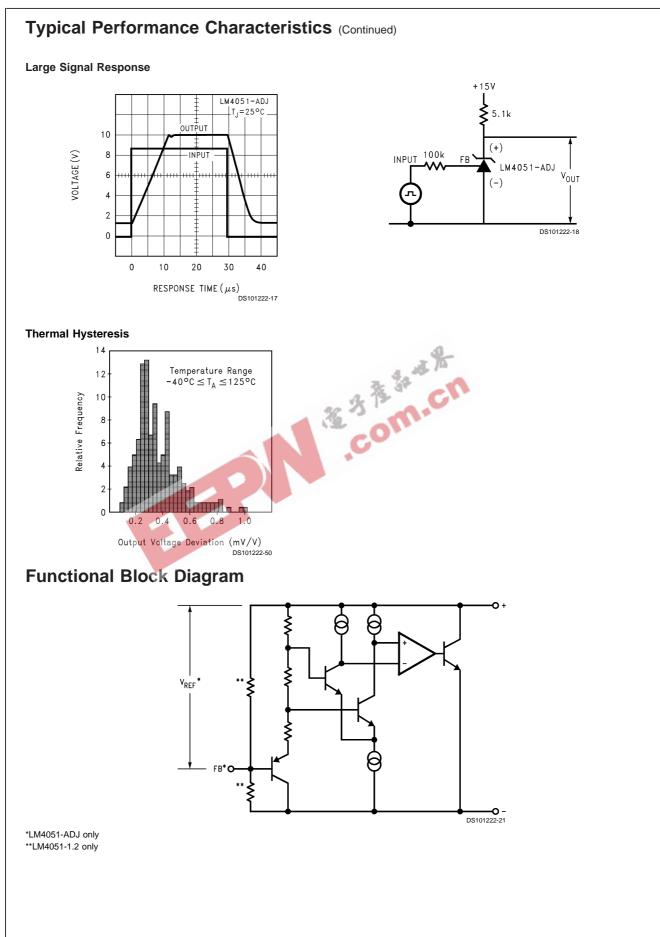

Typical Performance Characteristics (Continued) Noise Voltage **Reverse Characteristics and Minimum Operating Current** 1000 100 I_R=200 μA T_J=25°C LM4051-1.2 800 LM4051-ADJ: V_{OUT} = V_{REF} 80 REVERSE CURRENT (μ A) NOISE (nV//Hz) 600 60 400 40 200 20 Typical T_J=25°C LM4051-1.2 0 0 10 1k 100 10k 100k 1 0 0.4 0.8 1.2 2.0 1.6 FREQUENCY (Hz) REVERSE VOLTAGE(V) DS101222-5 DS101222-9 Start-Up THZ rate Characteristics R_S 30k $V_{\rm IN}$ (V) 5 LM4051-1.2 0 T_=25°C $R_{S} = 30k$ DS101222-8 1.5 IN405 V_R (V) 1.0 0.5 0 0 8 16 12 RESPONSE TIME (µs) DS101222-7 **Reference Voltage vs Output Reference Voltage vs Temperature** Voltage and Temperature and Output Voltage 1.22 1.225 $V_{OUT} = V_{REF}$ 1.216 1.22 REFERENCE VOLTAGE (V) REFERENCE VOLTAGE (V) VOUT 2.51 1.212 = 1.215 40°C = 5V 1.208 VOUT 1.21 25°C 1.204 25°C 1.205 1.2 $V_{OUT} = 10V$ 1.196 1.2 0 2 4 6 8 10 12 -40 -20 0 20 40 60 80 100 120 140 OUTPUT VOLTAGE (V) DS101222-11 TEMPERATURE (°C) DS101222-10



Typical Performance Characteristics (Continued)

Reverse Characteristics

LM4051


12

= 0

= 1 μ

DS101222-14

1M

Applications Information

The LM4051 is a precision micro-power curvature-corrected bandgap shunt voltage reference. For space critical applications, the LM4051 is available in the sub-miniature SSOT-23 surface-mount package. The LM4051 has been designed for stable operation without the need of an external capacitor connected between the "+" pin and the "-" pin. If, however, a bypass capacitor is used, the LM4051 remains stable. Design effort is further reduced with the choice of either a fixed 1.2V or an adjustable reverse breakdown voltage. The minimum operating current is 60 µA for the LM4051-1.2 and the LM4051-ADJ. Both versions have a maximum operating current of 12 mA.

LM4051s using the SSOT-23 package have pin 3 connected as the (-) output through the package's die attach interface. Therefore, the LM4051-1.2's pin 3 must be left floating or connected to pin 2 and the LM4051-ADJ's pin 3 is the (-) output.

In a conventional shunt regulator application (*Figure 1*), an external series resistor (R_S) is connected between the supply voltage and the LM4051. R_S determines the current that flows through the load (I_L) and the LM4051 (I_Q). Since load current and supply voltage may vary, R_S should be small enough to supply at least the minimum acceptable I_Q to the LM4051 even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its minimum, R_S should be large enough so that the current flowing through the LM4051 is less than 12 mA.

 R_S should be selected based on the supply voltage, (V_S), the desired load and operating current, (I_L and I_Q), and the LM4051's reverse breakdown voltage, V_R.

$$\mathsf{R}_{\mathsf{S}} = \frac{\mathsf{V}_{\mathsf{S}} - \mathsf{V}_{\mathsf{F}}}{\mathsf{I}_{\mathsf{I}} + \mathsf{I}_{\mathsf{O}}}$$

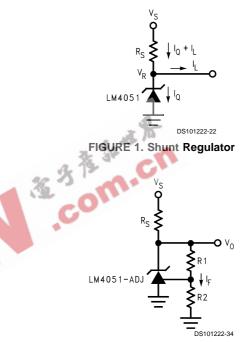
The LM4051-ADJ's output voltage can be adjusted to any value in the range of 1.24V through 10V. It is a function of the internal reference voltage (V_{REF}) and the ratio of the external feedback resistors as shown in *Figure 2*. The output voltage is found using the equation

$$V_{O} = V_{REF}[(R2/R1) + 1]$$
 (1)

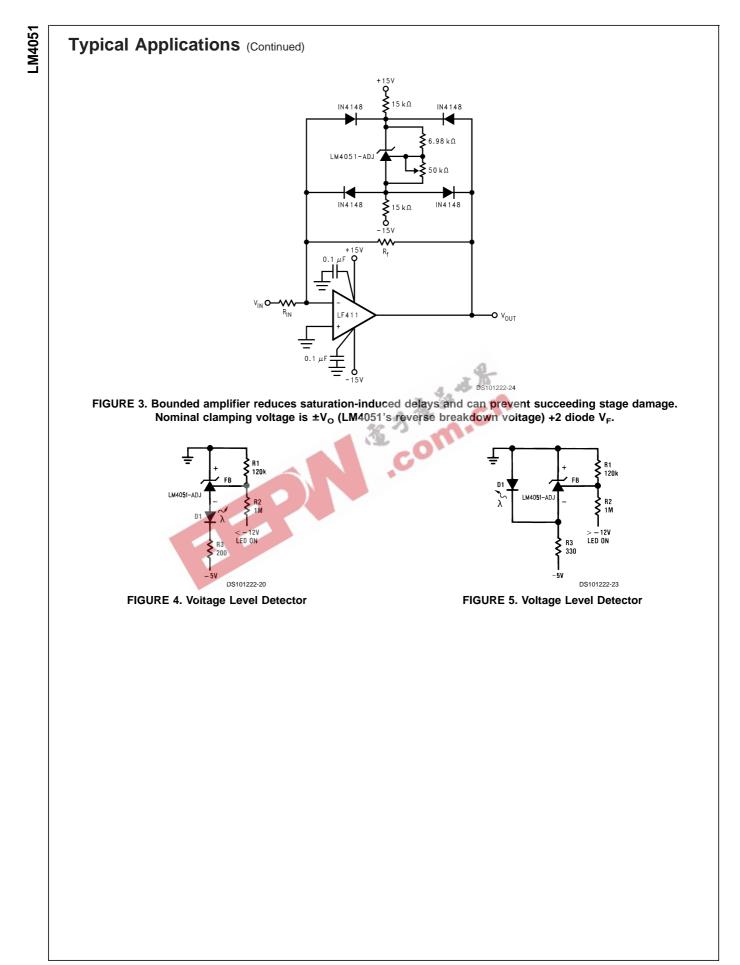
$$^{R}S = \frac{V_{S - V_{R}}}{I_{L} + I_{Q} + I_{F}}$$

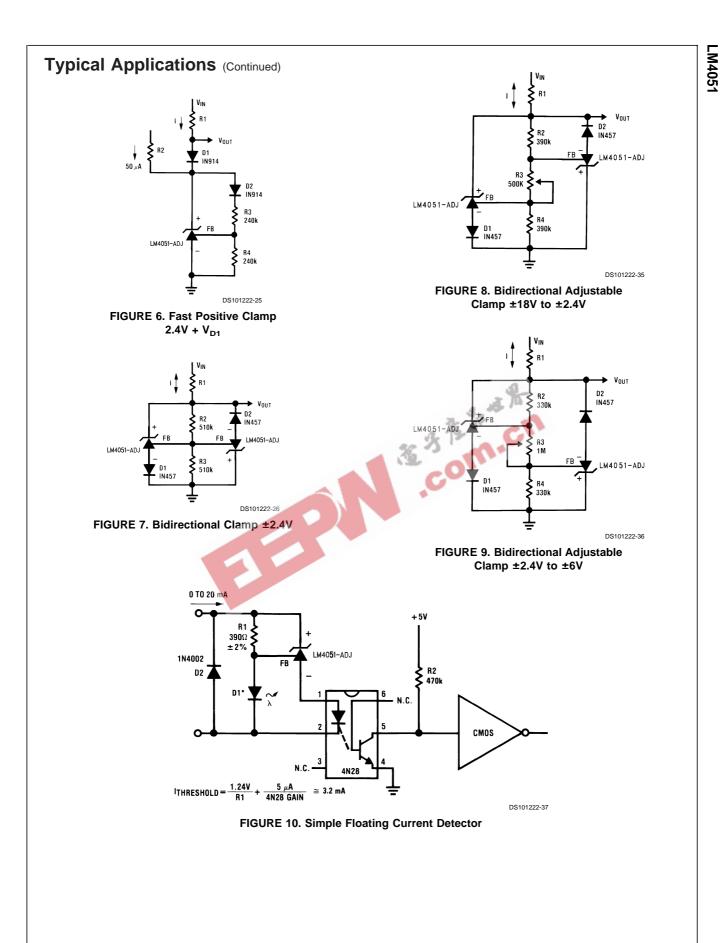
(2)

where V_O is the output voltage. The actual value of the internal $V_{\sf REF}$ is a function of $V_O.$ The "corrected" $V_{\sf REF}$ is determined by

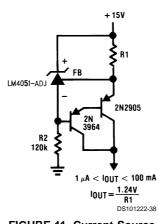

$$V_{\text{REF}} = V_{\text{O}} \left(\Delta V_{\text{REF}} / \Delta V_{\text{O}} \right) + V_{\text{Y}}$$
(3)

where


 $V_{Y} = 1.22V$


 $\Delta V_{\text{REF}}/\Delta V_{\text{O}} \text{ is found in the Electrical Characteristics and is typically -1.55 mV/V. You can get a more accurate indication of the output voltage by replacing the value of <math display="inline">V_{\text{REF}}$ in equation (1) with the value found using equation (3).

Typical Applications



Typical Applications (Continued)

FIGURE 11. Current Source

Note 11: *D1 can be any LED, V_F = 1.5V to 2.2V at 3 mA. D1 may act as an indicator. D1 will be on if I_{THRESHOLD} falls below the threshold current, except with I = 0.

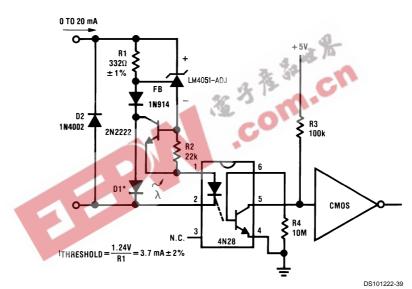
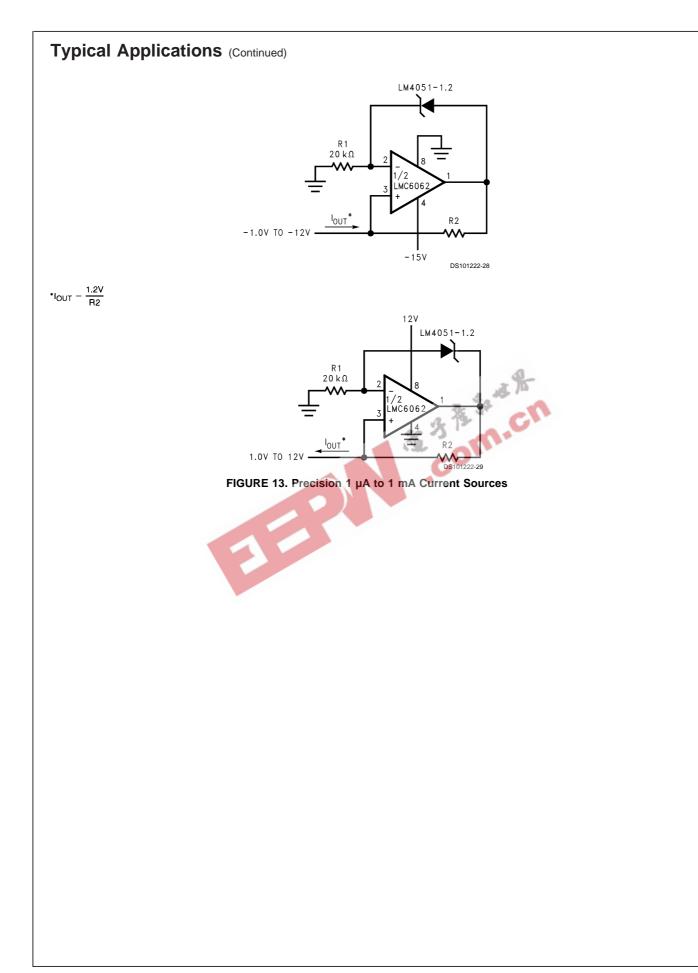
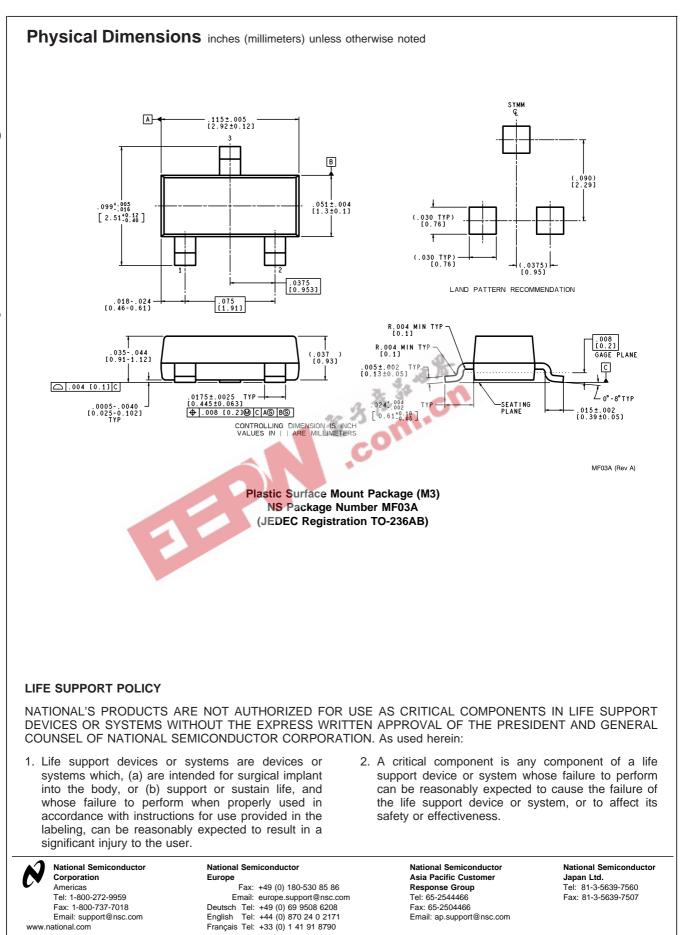




FIGURE 12. Precision Floating Current Detector

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.