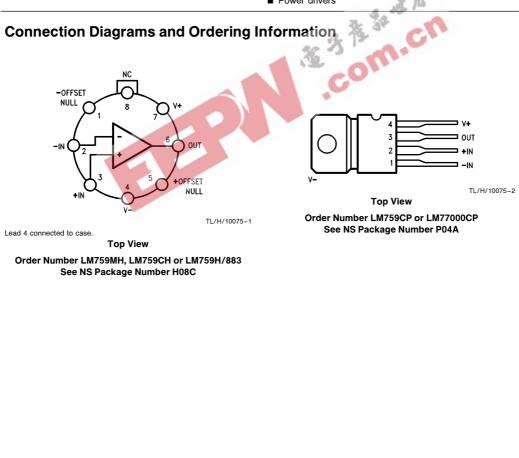


LM759/LM77000 **Power Operational Amplifiers**

General Description


The LM759 and LM77000 are high performance operational amplifiers that feature high output current capability. The LM759 is capable of providing 325 mA and the LM77000 providing 250 mA. Both amplifiers feature small signal characteristics that are better than the LM741. The amplifiers are designed to operate from a single or dual power supply with an input common mode range that includes the negative supply. The high gain and high output power provide superior performance. Internal current limiting, thermal shutdown, and safe area compensation are employed making the LM759 and LM77000 essentially indestructible.

Features

- Output current LM759—325 mA minimum LM77000-250 mA minimum
- Internal short circuit current limiting
- Internal thermal overload protection
- Internal output transistors safe-area protection ■ Input common mode voltage range includes ground or negative supply

Applications

- Voltage regulators
- Audio amplifiers
- Servo amplifiers
- Power drivers

© 1995 National Semiconductor Corporation TL/H/10075 RRD-B30M115/Printed in U. S. A.

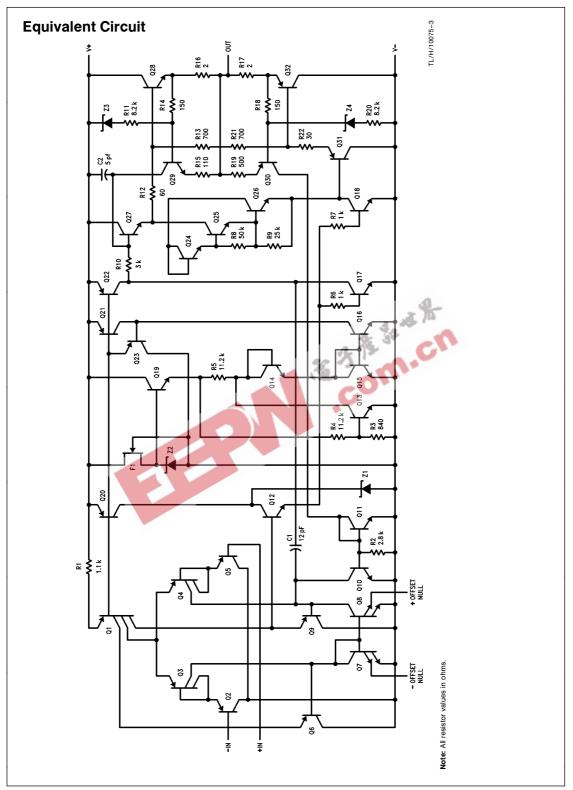
November 1994

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Storage Temperature Range

Storage Temperature Range	
Metal Can	-65°C to +175°C
Plastic Package	$-65^{\circ}C$ to $+150^{\circ}C$
Operating Junction Temperature Range	
Military (LM759M)	-55°C to +150°C
Commercial (LM759C, LM77000C)	0°C to +125°C
Lead Temperature	
Metal Can (soldering, 60 sec)	300°C
Plastic Package (soldering, 10 sec)	265°C

Internal Power Dissipation (Note 1)	Internally Limited
Supply Voltage	±18V
Differential Input Voltage	30V
Input Voltage (note 2)	±15V


LM759

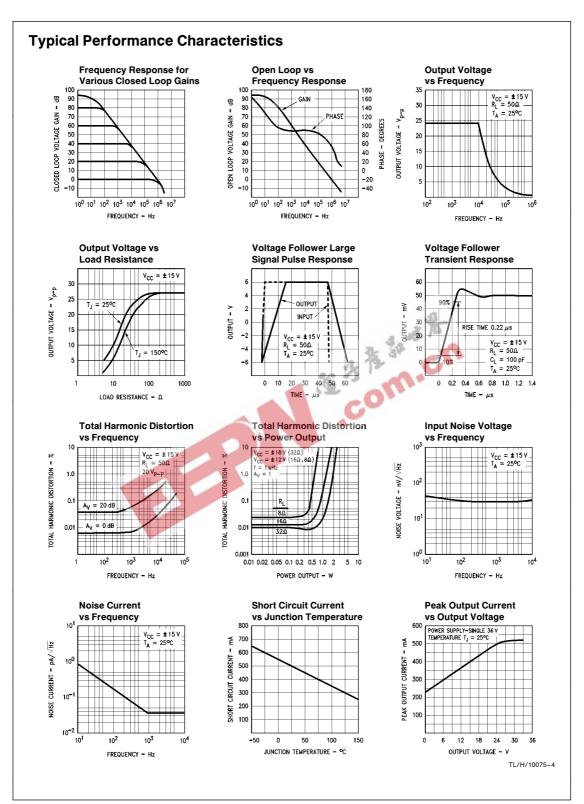
Electrical Characteristics $T_J = 25^{\circ}C$, $V_{CC} = \pm 15V$, unless otherwise specified

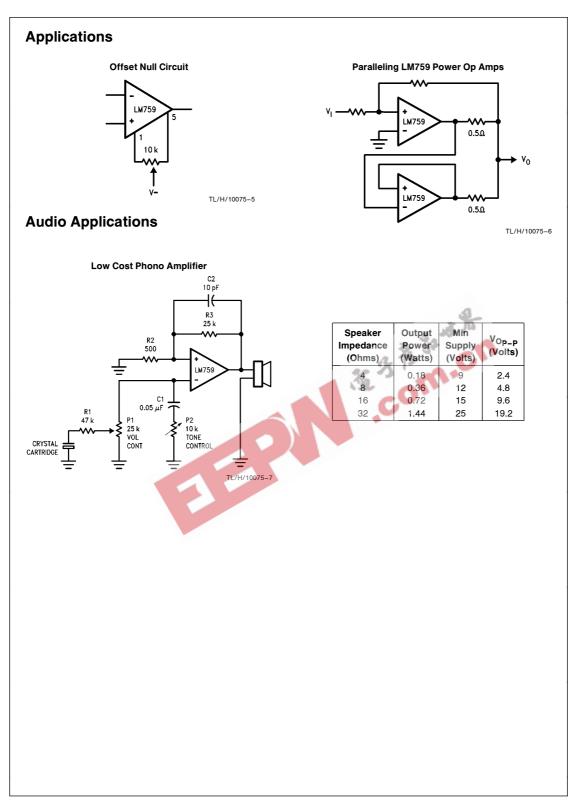
Symbol	Paramete	r	Conditions	Min	Тур	Max	Units
V _{IO}	Input Offset Voltage		${\sf R}_{\sf S} \le$ 10 k Ω		1.0	3.0	mV
IIO	Input Offset Current				5.0	30	nA
I _{IB}	Input Bias Current				50	150	nA
ZI	Input Impedance			0.25	1.5		MΩ
ICC	Supply Current				12	18	mA
V _{IR}	Input Voltage Range			V+ - 2V to V-	V ⁺ - 2V to V ⁻		V
I _{OS}	Output Short Circuit C	urrent	$ V_{CC} - V_{O} = 30V$	A P	±200		mA
IO PEAK	Peak Output Current		$3.0V \le V_{CC} - V_O \le 10V$	±325	± 500		mA
A _{VS}	Large Signal Voltage	Gain	$R_L \ge 50 \Omega, V_O = \pm 10 V$	50	200		V/mV
TR	Transient Response	Rise Time	$R_{L} = 50\Omega, A_{V} = 1.0$		300		ns
		Overshoot			5.0		%
SR	Slew Rate		$R_{L} = 50\Omega, A_{V} = 1.0$		0.6		V/µs
BW	Bandwidth		A _V = 1.0		1.0		MHz
The follo	wing specifications appl	$/ \text{ for } -55^{\circ}\text{C} \leq$	TJ ≤ +150°C				
V _{IO}	Input Offset Voltage		$R_{S} \le 10 \ k\Omega$			4.5	mV
IIO	Input Offset Current					60	nA
I _{IB}	Input Bias Current					300	nA
CMRR	Common Mode Rejec	tion Ratio	$R_{S} \le 10 \ k\Omega$	80	100		dB
PSRR	Power Supply Rejection	on Ratio	$R_{S} \le 10 \ k\Omega$	80	100		dB
A _{VS}	Large Signal Voltage (Gain	$\text{R}_{\text{L}} \geq 50 \Omega, \text{V}_{\text{O}} = \ \pm 10 \text{V}$	25	200		V/mV
V _{OP}	Output Voltage Swing		$R_1 = 50\Omega$	±10	±12.5		V

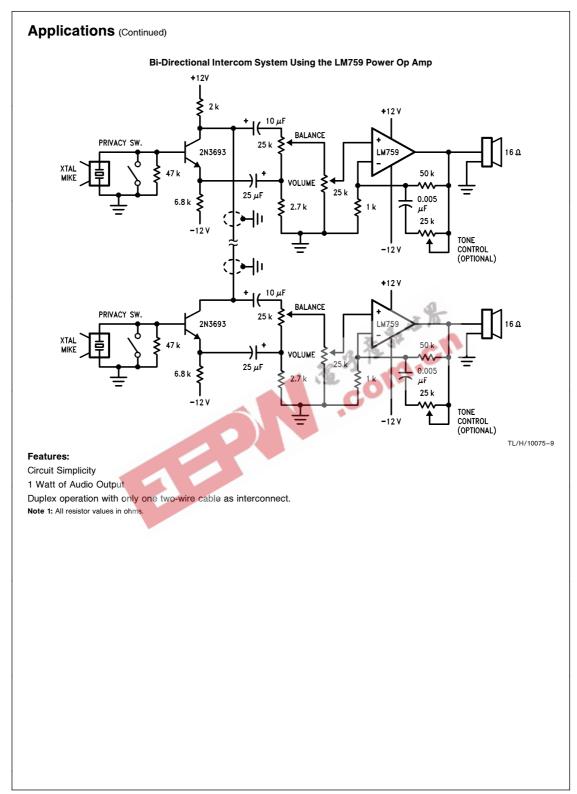
Symbol	Paramete	r	Conditions	Min	Тур	Max	Units
V _{IO}	Input Offset Voltage		${\sf R}_{\sf S} \le$ 10 k Ω		1.0	6.0	mV
I _{IO}	Input Offset Current				5.0	50	nA
I _{IB}	Input Bias Current				50	250	nA
ZI	Input Impedance			0.25	1.5		MΩ
Icc	Supply Current				12	18	mA
VIR	Input Voltage Range			V^+-2V to V^-	V^+ $-$ 2V to V^-		V
l _{OS}	Output Short Circuit C	urrent	$ V_{CC}-V_O = 30V$		±200		mA
I _{O PEAK}	Peak Output Current		$3.0V \leq \left V_{CC} - V_O\right \leq 10V$	±325	±500		mA
A _{VS}	Large Signal Voltage (Gain	$\text{R}_{L} \geq 50 \Omega, \text{V}_{O} = \pm 10 \text{V}$	25	200		V/m
TR	Transient Response	Rise Time	$R_{L} = 50\Omega, A_{V} = 1.0$		300		ns
		Overshoot			10		%
SR	Slew Rate		$R_L = 50\Omega, A_V = 1.0$		0.5		V /μ
BW	Bandwidth		A _V = 1.0		1.0		мн
The follo	wing specifications apply	/ for 0° \leq T _J \leq	≤ +125°C		S.		
V _{IO}	Input Offset Voltage		$\text{R}_{\text{S}} \leq \text{10 k}\Omega$	7. 44		7.5	m\
IIO	Input Offset Current			23	G	100	nA
I _{IB}	Input Bias Current					400	nA
CMRR	Common Mode Rejec	tion Ratio	$R_S \le 10 \text{ k}\Omega$	70	100		dE
PSRR	Power Supply Rejection	on Ratio	$R_{S} \leq 10 \text{ k}\Omega$	80	100		dE
A _{VS}	Large Signal Voltage	Gain	$R_L \geq 50 \Omega, V_O = \pm 10 V$	25	200		V/m
V _{OP}	Output Voltage Swing		$R_L = 50\Omega$	±10	±12.5		V
	F						

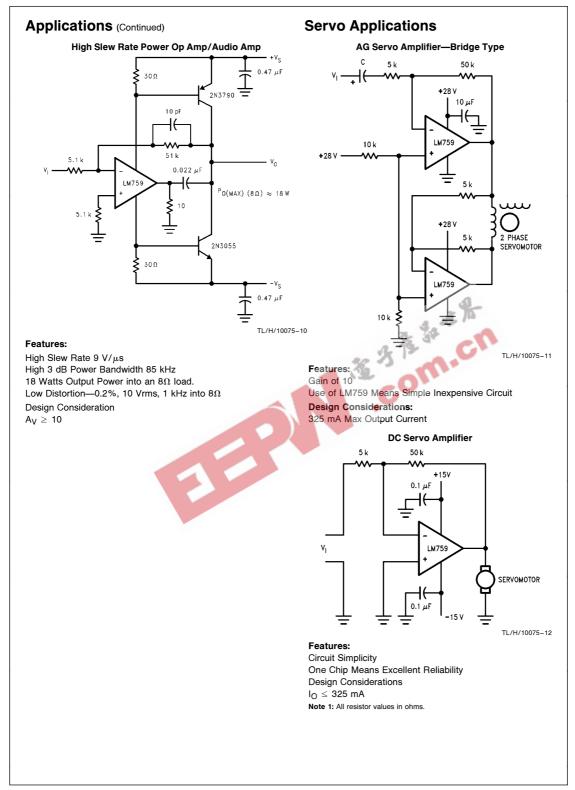
Symbol	Paramete	r	Conditions	Min	Тур	Max	Unit
V _{IO}	Input Offset Voltage		${\sf R}_{\sf S} \le 10 \ {\sf k}\Omega$		1.0	8.0	mV
I _{IO}	Input Offset Current				5.0	50	nA
I _{IB}	Input Bias Current				50	250	nA
ZI	Input Impedance			0.25	1.5		MΩ
Icc	Supply Current				12	18	mA
VIR	Input Voltage Range			+ 13 to V-	+ 13 to V-		v
los	Output Short Circuit Cu	irrent	$ V_{CC} - V_{O} = 30V$		±200		mA
I _{O PEAK}	Peak Output Current		$3.0V \leq \left V_{CC} - V_O\right \leq 10V$	±250	±400		mA
A _{VS}	Large Signal Voltage G	iain	$R_L \geq 50 \Omega, V_O = \pm 10 V$	25	200		V/m
TR	Transient Response	Rise Time	$R_{L} = 50\Omega, A_{V} = 1.0$		300		ns
		Overshoot			10		%
SR	Slew Rate	-	$R_L = 50\Omega, A_V = 1.0$		0.5		V
BW	Bandwidth		A _V = 1.0		1.0		м⊦
The follow	ing specifications apply f	or $0^{\circ} \leq T_{J} \leq +$	125°C		- A		
V _{IO}	Input Offset Voltage		${\sf R}_{\sf S} \le$ 10 k Ω	25.	1.1	10	m۱
I _{IO}	Input Offset Current			23	6	100	nA
I _{IB}	Input Bias Current			× · · ·	2	400	n/
CMR	Common Mode Reject	ion	$R_{S} \le 10 \text{ k}\Omega$	70	100		dE
PSRR	Power Supply Rejectio	n Ratio	$R_S \le 10 k\Omega$	80	100		dE
A _{VS}	Large Signal Voltage G	iain	$R_L \ge 50\Omega, V_O = \pm 10V$	25	200		V/n
V _{OP}	Output Voltage Swing		$R_L = 50\Omega$	±10	±12.5		v
sheet specif Schematic. Note 2: For	ications. To calculate the maxir	num junction tempe	unction temperature must be kept bel erature or heat sink required, use the V ⁻ , the absolute maximum input volt ailable for LM759H.	thermal resistance	alues which follow		

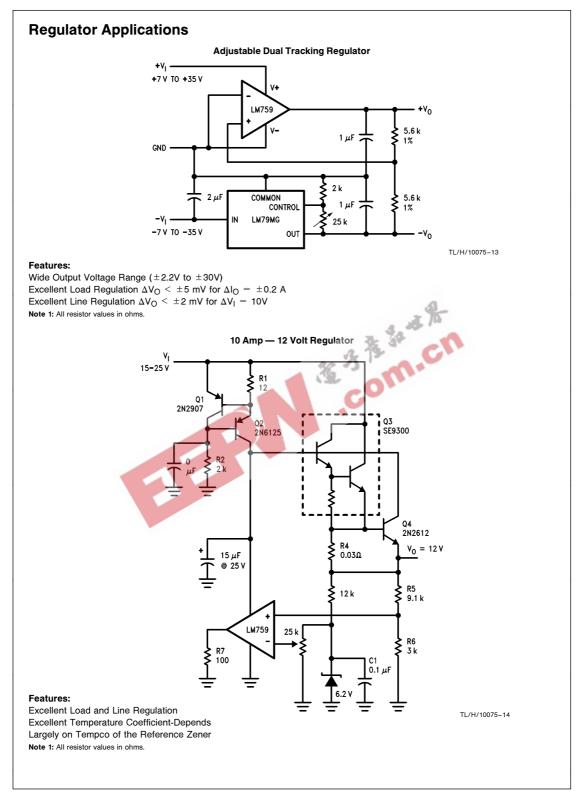
Package	Typ ^θ JC °C/W	Max ^θ JC °C/W	Typ ^θ JA °C/W	Max ^θ JA °C/W	Mountin Metal Can P The LM759 i
Plastic Package (P)	8.0	12	75	80	be used with LM759 can
Metal Can (H)	30	40	120	150	load) state. T ature to 125°
$P_{D Max} = \frac{T_{J Max} - \theta_{JC}}{\theta_{JC} + \theta_{C}}$ $= \frac{T_{J Max} - \theta_{JA}}{\theta_{JA}}$ $\theta_{CA} = \theta_{CS} + \theta_{SA}$ Solving T _J : $T_{J} = T_{A} + P_{D} (\theta_{JC})$ $= T_{A} + P_{D} \theta_{JA} (v)$	$\frac{T_A}{2}$ (without + θ_{CA}) o	r			order to avoid on or stud r mount heat s ing washers I case of the I power supply Plastic Pack The LM7590 tached by the
Where: $T_J = Junction Te$ $T_A = Ambient Ter$ $P_D = Power Dissi$ $\theta_{JA} = Junction to$ $\theta_{CA} = Case to am$ $\theta_{CS} = Case to heat$ $\theta_{SA} = Heat sink to$	mperature pation ambient t case ther bient ther t sink the	e thermal re rmal resis rmal resis ermal resi	tance tance stance	9	one of the m able, a piece suitable amo board. The in power supply through the i be provided t der worst cas
	•	F		9	


Hints


age (LM759CH/LM759MH)


e 8-Lead TO-99 metal can package must heat sink. With \pm 15V power supplies, the ipate up to 540 mW in its quiescent (no would result in a 100°C rise in chip temperassuming a 25°C ambient temperature). In s problem, it is advisable to use either a slip nt heat sink with this package. If a stud is used, it may be necessary to use insulatveen the stud and the chassis because the 59 is internally connected to the negative minal.


(LM759CP/LM77000CP)


and LM77000CP are designed to be atto a heat sink. This heat sink can be either heat sinks which are commercially availmetal such as the equipment chassis, or a of copper foil as on a double sided PC tant thing to remember is that the negative onnection to the op amp must be made Furthermore, adequate heat sinking must .ure b. . temperatur. eep the chip temperature below 125°C unbad and ambient temperature conditions.

