

#### LM4040

### **Precision Micropower Shunt Voltage Reference**

#### **General Description**

Ideal for space critical applications, the LM4040 precision voltage reference is available in the sub-miniature SC70 and SOT-23 surface-mount package. The LM4040's advanced design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4040 easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048V, 2.500V, 3.000V, 4.096V, 5.000V, 8.192V, and 10.000V. The minimum operating current increases from 60  $\mu\text{A}$  for the LM4040-2.5 to 100  $\mu\text{A}$  for the LM4040-10.0. All versions have a maximum operating current of 15 mA.

The LM4040 utilizes fuse and zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than  $\pm 0.1\%$  (A grade) at  $25^{\circ}\text{C}$ . Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.

Also available is the LM4041 with two reverse breakdown voltage versions: adjustable and 1.2V. Please see the LM4041 data sheet.

#### **Features**

- Small packages: SOT-23, TO-92 and SC70
- No output capacitor required
- Tolerates capacitive loads

Fixed reverse breakdown voltages of 2.048V,
 2.500V,3.000V, 4.096V, 5.000V, 8.192V, and 10.000V

#### **Key Specifications (LM4040-2.5)**

■ Output voltage tolerance (A grade, 25°C)

±0.1% (max)

■ Low output noise

 $35 \mu V_{rms}(typ)$ 

(10 Hz to 10 kHz)
■ Wide operating current range

60 μA to 15 mA -40°C to +85°C

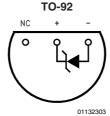
Industrial temperature rangeExtended temperature range

-40°C to +125°C

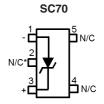
■ Low temperature coefficient

100 ppm/°C (max)

#### **Applications**


- Portable, Battery-Powered Equipment
- Data Acquisition Systems
- Instrumentation
- Process Control
- Energy Management
- Product Testing
- Automotive
- Precision Audio Components

#### **Connection Diagrams**




\*This pin must be left floating or connected to pin 2.

Top View See NS Package Number MF03A (JEDEC Registration TO-236AB)



Bottom View See NS Package Number Z03A



\*This pin must be left floating or connected to pin

Top View
See NS Package Number MAA05A

# Ordering Information Industrial Temperature Range (-40°C to +85°C)

|                                                | <u>.                                      </u>                                                                              |                                                                                                                                    |                                            |                                            |                                                                                                                      |                |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------|
| Reverse<br>Breakdown<br>Voltage                |                                                                                                                             |                                                                                                                                    | Package                                    |                                            |                                                                                                                      |                |
| Tolerance at<br>25°C and<br>Average            | M3 (S                                                                                                                       | OT-23)                                                                                                                             | M7 (\$                                     | SC70)                                      |                                                                                                                      | NS<br>Package  |
| Reverse<br>Breakdown<br>Voltage<br>Temperature | Supplied as 1000<br>Units Tape and<br>Reel                                                                                  | Supplied as 3000<br>Units tape and<br>Reel                                                                                         | Supplied as 1000<br>Units Tape and<br>Reel | Supplied as 3000<br>Units Tape and<br>Reel | Z (TO-92)                                                                                                            | Number         |
| Coefficient                                    | 11110101010000                                                                                                              | 1.1.4.0.4.0.4.11.4.0.4.0.0                                                                                                         |                                            |                                            | 1111010177                                                                                                           | 145004         |
| ±0.1%, 100<br>ppm/°C max (A<br>grade)          | LM4040AIM3-2.0<br>LM4040AIM3-2.5<br>LM4040AIM3-3.0<br>LM4040AIM3-4.1<br>LM4040AIM3-5.0<br>LM4040AIM3-8.2<br>LM4040AIM3-10.0 | LM4040AIM3X-2.0<br>LM4040AIM3X-2.5<br>LM4040AIM3X-3.0<br>LM4040AIM3X-4.1<br>LM4040AIM3X-5.0<br>LM4040AIM3X-5.0<br>LM4040AIM3X-10.0 |                                            |                                            | LM4040AIZ-2.0<br>LM4040AIZ-2.5<br>LM4040AIZ-3.0<br>LM4040AIZ-4.1<br>LM4040AIZ-5.0<br>LM4040AIZ-8.2<br>LM4040AIZ-10.0 | MF03A,<br>Z03A |
| ±0.2%, 100                                     | LM4040BIM3-2.0                                                                                                              | LM4040BIM3X-2.0                                                                                                                    | LM4040BIM7-2.0                             | LM4040BIM7X-2.0                            | LM4040BIZ-2.0                                                                                                        | MF03A,         |
| ppm/°C max (B                                  | LM4040BIM3-2.5                                                                                                              | LM4040BIM3X-2.5                                                                                                                    | LM4040BIM7-2.5                             | LM4040BIM7X-2.5                            | LM4040BIZ-2.5                                                                                                        | Z03A,          |
| grade)                                         | LM4040BIM3-3.0                                                                                                              | LM4040BIM3X-3.0                                                                                                                    | LM4040BIM7-3.0                             | LM4040BIM7X-3.0                            | LM4040BIZ-3.0                                                                                                        | MAA05A         |
| ,                                              | LM4040BIM3-4.1                                                                                                              | LM4040BIM3X-4.1                                                                                                                    | LM4040BIM7-4.1                             | LM4040BIM7X-4.1                            | LM4040BIZ-4.1                                                                                                        |                |
|                                                | LM4040BIM3-5.0                                                                                                              | LM4040BIM3X-5.0                                                                                                                    | LM4040BIM7-5.0                             | LM4040BIM7X-5.0                            | LM4040BIZ-5.0                                                                                                        |                |
|                                                | LM4040BIM3-8.2                                                                                                              | LM4040BIM3X-8.2                                                                                                                    | CO                                         |                                            | LM4040BIZ-8.2                                                                                                        |                |
|                                                | LM4040BIM3-10.0                                                                                                             | LM4040BIM3X-10.0                                                                                                                   |                                            |                                            | LM4040BIZ-10.0                                                                                                       |                |
| ±0.5%, 100                                     | LM4040CIM3-2.0                                                                                                              | LM4040CIM3X-2.0                                                                                                                    | LM4040CIM7-2.0                             | LM4040CIM7X-2.0                            | LM4040CIZ-2.0                                                                                                        | MF03A,         |
| ppm/°C max (C                                  | LM4040CIM3-2.5                                                                                                              | LM4040CIM3X-2.5                                                                                                                    | LM4040CIM7-2.5                             | LM4040CIM7X-2.5                            | LM4040CIZ-2.5                                                                                                        | Z03A,          |
| grade)                                         | LM4040CIM3-3.0                                                                                                              | LM4040CIM3X-3.0                                                                                                                    | LM4040CIM7-3.0                             | LM4040CIM7X-3.0                            | LM4040CIZ-3.0                                                                                                        | MAA05A         |
|                                                | LM4040CIM3-4.1                                                                                                              | LM4040CIM3X-4.1                                                                                                                    | LM4040CIM7-4.1                             | LM4040CIM7X-4.1                            | LM4040CIZ-4.1                                                                                                        |                |
|                                                | LM4040CIM3-5.0                                                                                                              | LM4040CIM3X-5.0                                                                                                                    | LM4040CIM7-5.0                             | LM4040CIM7X-5.0                            | LM4040CIZ-5.0                                                                                                        |                |
|                                                | LM4040CIM3-8.2                                                                                                              | LM4040CIM3X-8.2                                                                                                                    |                                            |                                            | LM4040CIZ-8.2                                                                                                        |                |
|                                                | LM4040CIM3-10.0                                                                                                             | LM4040CIM3X-10.0                                                                                                                   |                                            |                                            | LM4040CIZ-10.0                                                                                                       |                |
| ±1.0%, 150                                     | LM4040DIM3-2.0                                                                                                              | LM4040DIM3X-2.0                                                                                                                    | LM4040DIM7-2.0                             | LM4040DIM7X-2.0                            | LM4040DIZ-2.0                                                                                                        | MF03A,         |
| ppm/°C max (D                                  | LM4040DIM3-2.5                                                                                                              | LM4040DIM3X-2.5                                                                                                                    | LM4040DIM7-2.5                             | LM4040DIM7X-2.5                            | LM4040DIZ-2.5                                                                                                        | Z03A,          |
| grade)                                         | LM4040DIM3-3.0                                                                                                              | LM4040DIM3X-3.0                                                                                                                    | LM4040DIM7-3.0                             | LM4040DIM7X-3.0                            | LM4040DIZ-3.0                                                                                                        | MAA05A         |
|                                                | LM4040DIM3-4.1                                                                                                              | LM4040DIM3X-4.1                                                                                                                    | LM4040DIM7-4.1                             | LM4040DIM7X-4.1                            | LM4040DIZ-4.1                                                                                                        |                |
|                                                | LM4040DIM3-5.0                                                                                                              | LM4040DIM3X-5.0                                                                                                                    | LM4040DIM7-5.0                             | LM4040DIM7X-5.0                            | LM4040DIZ-5.0                                                                                                        |                |
|                                                | LM4040DIM3-8.2                                                                                                              | LM4040DIM3X-8.2                                                                                                                    |                                            |                                            | LM4040DIZ-8.2                                                                                                        |                |
|                                                | LM4040DIM3-10.0                                                                                                             | LM4040DIM3X-10.0                                                                                                                   |                                            |                                            | LM4040DIZ-10.0                                                                                                       |                |
| ±2.0%, 150                                     | LM4040EIM3-2.0                                                                                                              | LM4040EIM3X-2.0                                                                                                                    | LM4040EIM7-2.0                             | LM4040EIM7X-2.0                            | LM4040EIZ-2.0                                                                                                        | MF03A,         |
| ppm/°C max (E                                  | LM4040EIM3-2.5                                                                                                              | LM4040EIM3X-2.5                                                                                                                    | LM4040EIM7-2.5                             | LM4040EIM7X-2.5                            | LM4040EIZ-2.5                                                                                                        | Z03A,          |
| grade)                                         | LM4040EIM3-3.0                                                                                                              | LM4040EIM3X-3.0                                                                                                                    | LM4040EIM7-3.0                             | LM4040EIM7X-3.0                            | LM4040EIZ-3.0                                                                                                        | MAA05A         |

| Extended Temperature Range (-40 °C to +125 °C) |                                 |  |  |  |  |  |  |
|------------------------------------------------|---------------------------------|--|--|--|--|--|--|
| Reverse Breakdown                              | Package                         |  |  |  |  |  |  |
| Voltage Tolerance at 25 °C                     | M3 (SOT-23)                     |  |  |  |  |  |  |
| and Average Reverse Breakdown                  | See NS Package                  |  |  |  |  |  |  |
| Voltage Temperature Coefficient                | Number MF03A                    |  |  |  |  |  |  |
| ±0.5%, 100 ppm/°C max (C grade)                | LM4040CEM3-2.0, LM4040CEM3-2.5, |  |  |  |  |  |  |
|                                                | LM4040CEM3-3.0, LM4040CEM3-5.0  |  |  |  |  |  |  |
| ±1.0%, 150 ppm/°C max (D grade)                | LM4040DEM3-2.0, LM4040DEM3-2.5, |  |  |  |  |  |  |
|                                                | LM4040DEM3-3.0, LM4040DEM3-5.0  |  |  |  |  |  |  |
| ±2.0%, 150 ppm/°C max (E grade)                | LM4040EEM3-2.0, LM4040EEM3-2.5, |  |  |  |  |  |  |
|                                                | LM4040EEM3-3.0                  |  |  |  |  |  |  |



### **SOT-23 AND SC70 Package Marking Information**

Only three fields of marking are possible on the SOT-23's and SC70's small surface. This table gives the meaning of the three fields.

| Part Marking    | Field Definition                                                                     |
|-----------------|--------------------------------------------------------------------------------------|
| RJA SOT-23 only | First Field:                                                                         |
| R2A SOT-23 only |                                                                                      |
| RKA SOT-23 only |                                                                                      |
| R4A SOT-23 only | R = Reference                                                                        |
| R5A SOT-23 only | Second Field:                                                                        |
|                 | J = 2.048V Voltage Option                                                            |
|                 | 2 = 2.500V Voltage Option                                                            |
| R8A SOT-23 only | K = 3.000V Voltage Option                                                            |
| R0A SOT-23 only | 4 = 4.096V Voltage Option                                                            |
| RJB             |                                                                                      |
| R2B             | 5 = 5.000V Voltage Option                                                            |
| RKB             |                                                                                      |
| R4B             | 8= 8.192V Voltage Option                                                             |
| R5B             | 0 = 10.000V Voltage Option                                                           |
| R8B SOT-23 only | ۵                                                                                    |
| R0B SOT-23 only | Third Field:                                                                         |
| RJC             | 3, 34                                                                                |
| R2C             | A–E = Initial Reverse Breakdown Voltage or Reference Voltage Tolerance               |
| RKC             |                                                                                      |
| R4C             | $A = \pm 0.1\%$ , $B = \pm 0.2\%$ , $C = +0.5\%$ , $D = \pm 1.0\%$ , $E = \pm 2.0\%$ |
| R5C             |                                                                                      |
| R8C SOT-23 only |                                                                                      |
| R0C SOT-23 only |                                                                                      |
| RJD             |                                                                                      |
| R2D             |                                                                                      |
| RKD             |                                                                                      |
| R4D             |                                                                                      |
| R5D             |                                                                                      |
| R8D SOT-23 only |                                                                                      |
| R0D SOT-23 only |                                                                                      |
| RJE             |                                                                                      |
| R2E             |                                                                                      |
| RKE             |                                                                                      |

#### **Absolute Maximum Ratings** (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Reverse Current 20 mA Forward Current 10 mA Power Dissipation ( $T_A = 25^{\circ}C$ ) (Note 2) M3 Package 306 mW Z Package 550 mW 241 mW M7 Package Storage Temperature -65°C to +150°C Lead Temperature M3 Package Vapor phase (60 seconds) +215°C +220°C Infrared (15 seconds) Z Package Soldering (10 seconds) +260°C **ESD Susceptibility** Human Body Model (Note 3) 2 kV

Machine Model (Note 3)

200V

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

#### Operating Ratings(Notes 1, 2)

| Temperature Range Industrial Temperature Range Extended Temperature Range | $(T_{min} \le T_A \le T_{max})$ $-40^{\circ}C \le T_A \le +85^{\circ}C$ $-40^{\circ}C \le T_{\Delta} \le$ |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| ·                                                                         | +125°C                                                                                                    |
| Reverse Current                                                           |                                                                                                           |
| LM4040-2.0                                                                | 60 μA to 15 mA                                                                                            |
| LM4040-2.5                                                                | 60 μA to 15 mA                                                                                            |
| LM4040-3.0                                                                | 62 μA to 15 mA                                                                                            |
| LM4040-4.1                                                                | 68 μA to 15 mA                                                                                            |
| LM4040-5.0                                                                | 74 μA to 15 mA                                                                                            |
| LM4040-8.2                                                                | 91 μA to 15 mA                                                                                            |
| LM4040-10.0                                                               | 100 μA to 15 mA                                                                                           |

#### LM4040-2.0

#### **Electrical Characteristics (Industrial Temperature Range)**

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}\text{C}$ . The grades A and B designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.1\%$  and  $\pm 0.2\%$ , respectively.

| Symbol                    | Parameter                                          | Conditions                               | Typical<br>(Note 4) | LM4040AIM3<br>LM4040AIZ<br>(Limit)<br>(Note 5) | LM4040BIM3<br>LM4040BIZ<br>LM4040BIM7<br>(Limit)<br>(Note 5) | Units<br>(Limit) |
|---------------------------|----------------------------------------------------|------------------------------------------|---------------------|------------------------------------------------|--------------------------------------------------------------|------------------|
| V <sub>R</sub>            | Reverse Breakdown Voltage                          | I <sub>R</sub> = 100 μA                  | 2.048               |                                                |                                                              | V                |
|                           | Reverse Breakdown Voltage                          | l <sub>R</sub> = 100 μA                  |                     | ±2.0                                           | ±4.1                                                         | mV (max)         |
|                           | Tolerance (Note 6)                                 |                                          |                     | ±15                                            | ±17                                                          | mV (max)         |
| I <sub>RMIN</sub>         | Minimum Operating Current                          |                                          | 45                  |                                                |                                                              | μΑ               |
|                           |                                                    |                                          |                     | 60                                             | 60                                                           | μΑ (max)         |
|                           |                                                    |                                          |                     | 65                                             | 65                                                           | μA (max)         |
| $\Delta V_R / \Delta T$   | Average Reverse Breakdown                          | I <sub>R</sub> = 10 mA                   | ±20                 |                                                |                                                              | ppm/°C           |
|                           | Voltage Temperature Coefficient                    | I <sub>R</sub> = 1 mA                    | ±15                 | ±100                                           | ±100                                                         | ppm/°C (max)     |
|                           | (Note 6)                                           | I <sub>R</sub> = 100 μA                  | ±15                 |                                                |                                                              | ppm/°C           |
| $\Delta V_R / \Delta I_R$ | Reverse Breakdown Voltage<br>Change with Operating | $I_{RMIN} \le I_R \le 1 \text{ mA}$      | 0.3                 |                                                |                                                              | mV               |
|                           | Current Change (Note *NO                           |                                          |                     | 0.8                                            | 0.8                                                          | mV (max)         |
|                           | TARGET FOR FNXref<br>NS4914*)                      |                                          |                     | 1.0                                            | 1.0                                                          | mV (max)         |
|                           |                                                    | $1 \text{ mA} \le I_R \le 15 \text{ mA}$ | 2.5                 |                                                |                                                              | mV               |
|                           |                                                    |                                          |                     | 6.0                                            | 6.0                                                          | mV (max)         |
|                           |                                                    |                                          |                     | 8.0                                            | 8.0                                                          | mV (max)         |
| Z <sub>R</sub>            | Reverse Dynamic                                    | I <sub>R</sub> = 1 mA, f = 120 Hz,       | 0.3                 |                                                |                                                              | Ω                |
|                           | Impedance                                          | $I_{AC} = 0.1 I_{R}$                     |                     | 0.8                                            | 0.8                                                          | Ω (max)          |
| e <sub>N</sub>            | Wideband Noise                                     | I <sub>R</sub> = 100 μA                  | 35                  |                                                |                                                              | $\mu V_{rms}$    |
|                           |                                                    | 10 Hz ≤ f ≤ 10 kHz                       |                     |                                                |                                                              |                  |

#### LM4040-2.0

#### **Electrical Characteristics (Industrial Temperature Range)** (Continued)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades A and B designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.1\%$  and  $\pm 0.2\%$ , respectively.

| Symbol            | Parameter                                        | Conditions                                                                                     | Typical<br>(Note 4) | LM4040AIM3<br>LM4040AIZ<br>(Limit)<br>(Note 5) | LM4040BIM3<br>LM4040BIZ<br>LM4040BIM7<br>(Limit)<br>(Note 5) | Units<br>(Limit) |
|-------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------|--------------------------------------------------------------|------------------|
| $\Delta V_{R}$    | Reverse Breakdown Voltage<br>Long Term Stability | t = 1000  hrs<br>$T = 25^{\circ}\text{C} \pm 0.1^{\circ}\text{C}$<br>$I_{R} = 100 \mu\text{A}$ | 120                 |                                                |                                                              | ppm              |
| V <sub>HYST</sub> | Thermal Hysteresis (Note 8)                      | $\Delta T = -40^{\circ}C$ to $+125^{\circ}C$                                                   | 0.08                |                                                |                                                              | %                |

### LM4040-2.0 Electrical Characteristics (Industrial Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25$ °C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.5\%$ ,  $\pm 1.0\%$  and  $\pm 2.0\%$ , respectively.

| Symbol                  | Parameter                                           | Conditions                                                 | Typical<br>(Note 4) | LM4040CIM3<br>LM4040CIZ<br>LM4040CIM7 | LM4040DIM3<br>LM4040DIZ<br>LM4040DIM7 | LM4040EIM7<br>LM4040EIZ<br>(Limit) | Units<br>(Limit)     |
|-------------------------|-----------------------------------------------------|------------------------------------------------------------|---------------------|---------------------------------------|---------------------------------------|------------------------------------|----------------------|
|                         |                                                     |                                                            | 36 9                | (Limit)<br>(Note 5)                   | (Limit)<br>(Note 5)                   | (Note 5)                           |                      |
| V <sub>R</sub>          | Reverse Breakdown<br>Voltage                        | I <sub>R</sub> = 100 μA                                    | 2.048               | ,0,,                                  |                                       |                                    | V                    |
|                         | Reverse Breakdown<br>Voltage Tolerance<br>(Note 6)  | Ι <sub>R</sub> = 100 μΑ                                    |                     | ±10<br>±23                            | ±20<br><b>±40</b>                     | ±41<br><b>±60</b>                  | mV (max)<br>mV (max) |
| I <sub>RMIN</sub>       | Minimum Operating Current                           |                                                            | 45                  | 60                                    | 65                                    | 65                                 | μΑ<br>μΑ (max)       |
|                         |                                                     |                                                            |                     | 65                                    | 70                                    | 70                                 | μΑ (max)             |
| $\Delta V_R / \Delta T$ | Average Reverse<br>Breakdown Voltage                | I <sub>R</sub> = 10 mA                                     | ±20<br>±15          | ±100                                  | ±150                                  | ±150                               | ppm/°C (max)         |
|                         | Temperature Coefficient (Note 6)                    | $I_{R} = 1 \text{ mA}$ $I_{R} = 100  \mu\text{A}$          | ±15                 | ±100                                  | ±150                                  | ±150                               | ppm/°C (max)         |
| $\Delta V_R/\Delta I_R$ | Reverse Breakdown                                   | $I_{RMIN} \le I_{R} \le 1 \text{ mA}$                      | 0.3                 |                                       |                                       |                                    | mV                   |
|                         | Voltage Change with<br>Operating Current            |                                                            |                     | 0.8<br><b>1.0</b>                     | 1.0<br><b>1.2</b>                     | 1.0<br><b>1.2</b>                  | mV (max)             |
|                         | Change                                              | 1 mA ≤ I <sub>B</sub> ≤ 15 mA                              | 2.5                 | 1.0                                   | 1.2                                   | 1.2                                | mV (max)<br>mV       |
|                         | (Note *NO TARGET FOR FNXref                         | 1 111/2 18 2 10 111/4                                      | 2.3                 | 6.0                                   | 8.0                                   | 8.0                                | mV (max)             |
|                         | NS4914*)                                            |                                                            |                     | 8.0                                   | 10.0                                  | 10.0                               | mV (max)             |
| Z <sub>R</sub>          | Reverse Dynamic                                     | I <sub>R</sub> = 1 mA, f = 120 Hz                          | 0.3                 |                                       |                                       |                                    | Ω                    |
|                         | Impedance Wideband Noise                            | $I_{AC} = 0.1 I_{R}$ $I_{R} = 100 \mu A$                   | 35                  | 0.9                                   | 1.1                                   | 1.1                                | Ω(max)               |
| e <sub>N</sub>          | Wideballd Noise                                     | $10 \text{ Hz} \le f \le 10 \text{ kHz}$                   | 35                  |                                       |                                       |                                    | $\mu V_{rms}$        |
| $\Delta V_{R}$          | Reverse Breakdown<br>Voltage Long Term<br>Stability | t = 1000 hrs<br>T = 25°C ±0.1°C<br>I <sub>B</sub> = 100 μA | 120                 |                                       |                                       |                                    | ppm                  |
| V <sub>HYST</sub>       | Thermal Hysteresis (Note 8)                         | $\Delta T = -40^{\circ}C$ to $+125^{\circ}C$               | 0.08                |                                       |                                       |                                    | %                    |

# LM4040-2.0 Electrical Characteristics (Extended Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.5\%$ ,  $\pm 1.0\%$  and  $\pm 2.0\%$ , respectively.

| Symbol                    | Parameter                                           | Conditions                                                       | Typical<br>(Note 4) | LM4040CEM3<br>(Limit)<br>(Note 5) | LM4040DEM3<br>(Limit)<br>(Note 5) | <b>LM4040EEM3</b> (Limit) (Note 5) | Units<br>(Limit)           |
|---------------------------|-----------------------------------------------------|------------------------------------------------------------------|---------------------|-----------------------------------|-----------------------------------|------------------------------------|----------------------------|
| $V_R$                     | Reverse Breakdown<br>Voltage                        | I <sub>R</sub> = 100 μA                                          | 2.048               |                                   |                                   |                                    | V                          |
|                           | Reverse Breakdown<br>Voltage Tolerance<br>(Note 6)  | I <sub>R</sub> = 100 μA                                          |                     | ±10<br>±30                        | ±20<br><b>±50</b>                 | ±41<br><b>±70</b>                  | mV (max)<br>mV (max)       |
| I <sub>RMIN</sub>         | Minimum Operating Current                           |                                                                  | 45                  | 60                                | 65                                | 65                                 | μΑ<br>μΑ (max)             |
|                           |                                                     |                                                                  |                     | 68                                | 73                                | 73                                 | μΑ (max)                   |
| $\Delta V_R/\Delta T$     | Average Reverse<br>Breakdown Voltage                | I <sub>R</sub> = 10 mA                                           | ±20                 |                                   |                                   |                                    | ppm/°C                     |
|                           | Temperature                                         | I <sub>R</sub> = 1 mA                                            | ±15                 | ±100                              | ±150                              | ±150                               | ppm/°C (max)               |
|                           | Coefficient (Note 6)                                | I <sub>R</sub> = 100 μA                                          | ±15                 |                                   | 40                                |                                    | ppm/°C                     |
| $\Delta V_R / \Delta I_R$ | Reverse Breakdown<br>Voltage Change with            | $I_{RMIN} \le I_R \le 1 \text{ mA}$                              | 0.3                 | 0.8.                              | 100                               | 1.0                                | mV<br>mV (max)             |
|                           | Operating Current<br>Change<br>(Note 7)             |                                                                  |                     | 1.0                               | 1.2                               | 1.2                                | mV (max)                   |
|                           |                                                     | 1 mA ≤ I <sub>R</sub> ≤ 15 mA                                    | 2.5                 | 6.0<br><b>8.0</b>                 | 8.0<br><b>10.0</b>                | 8.0<br><b>10.0</b>                 | mV<br>mV (max)<br>mV (max) |
| Z <sub>R</sub>            | Reverse Dynamic<br>Impedance                        | $I_{R} = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_{R}$ | 0.3                 | 0.9                               | 1.1                               | 1.1                                | $\Omega$ $\Omega$ (max)    |
| e <sub>N</sub>            | Wideband Noise                                      | $I_{R} = 100 \mu A$<br>10 Hz $\leq f \leq 10 \text{ kHz}$        | 35                  |                                   |                                   |                                    | $\mu V_{rms}$              |
| $\Delta V_R$              | Reverse Breakdown<br>Voltage Long Term<br>Stability | t = 1000 hrs<br>T = 25°C ±0.1°C<br>I <sub>R</sub> = 100 μA       | 120                 |                                   |                                   |                                    | ppm                        |
| V <sub>HYST</sub>         | Thermal Hysteresis (Note 8)                         | $\Delta T = -40^{\circ}C \text{ to } +125^{\circ}C$              | 0.08                |                                   |                                   |                                    | %                          |

# LM4040-2.5 Electrical Characteristics (Industrial Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades A and B designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.1\%$  and  $\pm 0.2\%$ , respectively.

| Symbol            | Parameter                 | Conditions              | Typical<br>(Note 4) | LM4040AIM3<br>LM4040AIZ<br>(Limit)<br>(Note 5) | LM4040BIM3<br>LM4040BIZ<br>LM4040BIM7<br>Limits<br>(Note 5) | Units<br>(Limit) |
|-------------------|---------------------------|-------------------------|---------------------|------------------------------------------------|-------------------------------------------------------------|------------------|
| V <sub>R</sub>    | Reverse Breakdown Voltage | I <sub>R</sub> = 100 μA | 2.500               |                                                |                                                             | V                |
|                   | Reverse Breakdown Voltage | I <sub>R</sub> = 100 μA |                     | ±2.5                                           | ±5.0                                                        | mV (max)         |
|                   | Tolerance (Note 6)        |                         |                     | ±19                                            | ±21                                                         | mV (max)         |
| I <sub>RMIN</sub> | Minimum Operating Current |                         | 45                  |                                                |                                                             | μΑ               |
|                   |                           |                         |                     | 60                                             | 60                                                          | μA (max)         |
|                   |                           |                         |                     | 65                                             | 65                                                          | μA (max)         |

#### LM4040-2.5

### Electrical Characteristics (Industrial Temperature Range) (Continued)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades A and B designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.1\%$  and  $\pm 0.2\%$ , respectively.

| Symbol                    | Parameter                   | Conditions                                   | Typical<br>(Note 4) | LM4040AIM3<br>LM4040AIZ<br>(Limit)<br>(Note 5) | LM4040BIM3<br>LM4040BIZ<br>LM4040BIM7<br>Limits<br>(Note 5) | Units<br>(Limit) |
|---------------------------|-----------------------------|----------------------------------------------|---------------------|------------------------------------------------|-------------------------------------------------------------|------------------|
| $\Delta V_R/\Delta T$     | Average Reverse Breakdown   | I <sub>R</sub> = 10 mA                       | ±20                 |                                                |                                                             | ppm/°C           |
|                           | Voltage Temperature         | I <sub>R</sub> = 1 mA                        | ±15                 | ±100                                           | ±100                                                        | ppm/°C (max)     |
|                           | Coefficient (Note 6)        | $I_R = 100 \mu A$                            | ±15                 |                                                |                                                             | ppm/°C           |
| $\Delta V_R / \Delta I_R$ | Reverse Breakdown Voltage   | $I_{RMIN} \le I_{R} \le 1 \text{ mA}$        | 0.3                 |                                                |                                                             | mV               |
|                           | Change with Operating       |                                              |                     | 0.8                                            | 0.8                                                         | mV (max)         |
|                           | Current Change (Note 7)     |                                              |                     | 1.0                                            | 1.0                                                         | mV (max)         |
|                           |                             | $1 \text{ mA} \leq I_{R} \leq 15 \text{ mA}$ | 2.5                 |                                                |                                                             | mV               |
|                           |                             |                                              |                     | 6.0                                            | 6.0                                                         | mV (max)         |
|                           |                             |                                              |                     | 8.0                                            | 8.0                                                         | mV (max)         |
| Z <sub>R</sub>            | Reverse Dynamic             | $I_R = 1 \text{ mA}, f = 120 \text{ Hz},$    | 0.3                 |                                                |                                                             | Ω                |
|                           | Impedance                   | $I_{AC} = 0.1 I_{R}$                         |                     | 0.8                                            | 0.8                                                         | $\Omega$ (max)   |
| e <sub>N</sub>            | Wideband Noise              | $I_R = 100 \mu A$                            | 35 🚜                | JS- /**                                        |                                                             | $\mu V_{rms}$    |
|                           |                             | $10 \ Hz \le f \le 10 \ kHz$                 | a the second        |                                                |                                                             |                  |
| $\Delta V_R$              | Reverse Breakdown Voltage   | t = 1000 hrs                                 | 3                   |                                                |                                                             |                  |
|                           | Long Term Stability         | $T = 25^{\circ}C \pm 0.1^{\circ}C$           | 120                 |                                                |                                                             | ppm              |
|                           |                             | I <sub>R</sub> = 100 μA                      |                     |                                                |                                                             |                  |
| V <sub>HYST</sub>         | Thermal Hysteresis (Note 8) | $\Delta T = -40$ °C to +125°C                | 0.08                |                                                |                                                             | %                |

# LM4040-2.5 Electrical Characteristics (Industrial Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.5\%$ ,  $\pm 1.0\%$  and  $\pm 2.0\%$ , respectively.

| Symbol                  | Parameter                                                                  | Conditions                                                 | Typical<br>(Note 4) | LM4040CIM3<br>LM4040DIZ<br>LM4040CIM7<br>Limits<br>(Note 5) | LM4040DIM3<br>LM4040DIZ<br>LM4040DIM7<br>Limits<br>(Note 5) | LM4040EIM7<br>LM4040EIZ<br>Limits<br>(Note 5) | Units<br>(Limit)           |
|-------------------------|----------------------------------------------------------------------------|------------------------------------------------------------|---------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|----------------------------|
| V <sub>R</sub>          | Reverse Breakdown<br>Voltage                                               | I <sub>R</sub> = 100 μA                                    | 2.500               |                                                             |                                                             |                                               | V                          |
|                         | Reverse Breakdown<br>Voltage Tolerance<br>(Note 6)                         | Ι <sub>R</sub> = 100 μΑ                                    |                     | ±12<br>±29                                                  | ±25<br>±49                                                  | ±50<br>±74                                    | mV (max)<br>mV (max)       |
| I <sub>RMIN</sub>       | Minimum Operating<br>Current                                               |                                                            | 45                  | 60<br><b>65</b>                                             | 65<br><b>70</b>                                             | 65<br><b>70</b>                               | μΑ<br>μΑ (max)<br>μΑ (max) |
| $\Delta V_R / \Delta T$ | Average Reverse<br>Breakdown Voltage<br>Temperature<br>Coefficient(Note 6) | $I_{R}$ = 10 mA<br>$I_{R}$ = 1 mA<br>$I_{R}$ = 100 $\mu$ A | ±20<br>±15<br>±15   | ±100                                                        | ±150                                                        | ±150                                          | ppm/°C (max) ppm/°C        |

### LM4040-2.5 Electrical Characteristics (Industrial Temperature Range) (Continued)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.5\%$ ,  $\pm 1.0\%$  and  $\pm 2.0\%$ , respectively.

| Symbol                    | Parameter                                                     | Conditions                                                                                      | Typical<br>(Note 4) | LM4040CIM3<br>LM4040DIZ<br>LM4040CIM7<br>Limits<br>(Note 5) | LM4040DIM3<br>LM4040DIZ<br>LM4040DIM7<br>Limits<br>(Note 5) | LM4040EIM7<br>LM4040EIZ<br>Limits<br>(Note 5) | Units<br>(Limit)             |
|---------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|------------------------------|
| $\Delta V_R / \Delta I_R$ | Reverse Breakdown<br>Voltage Change with<br>Operating Current | $I_{\text{RMIN}} \le I_{\text{R}} \le 1 \text{ mA}$                                             | 0.3                 | 0.8<br><b>1.0</b>                                           | 1.0<br><b>1.2</b>                                           | 1.0<br><b>1.2</b>                             | mV<br>mV (max)<br>mV (max)   |
|                           | Change<br>(Note 7)                                            | 1 mA ≤ I <sub>R</sub> ≤ 15 mA                                                                   | 2.5                 | 6.0<br><b>8.0</b>                                           | 8.0<br><b>10.0</b>                                          | 8.0<br><b>10.0</b>                            | mV<br>mV (max)<br>mV (max)   |
| Z <sub>R</sub>            | Reverse Dynamic<br>Impedance                                  | $I_R = 1 \text{ mA, f} = 120 \text{ Hz}$<br>$I_{AC} = 0.1 I_R$                                  | 0.3                 | 0.9                                                         | 1.1                                                         | 1.1                                           | $\Omega$ $\Omega({\sf max})$ |
| e <sub>N</sub>            | Wideband Noise                                                | $I_{R} = 100 \mu A$<br>10 Hz $\leq f \leq 10 \text{ kHz}$                                       | 35                  |                                                             |                                                             |                                               | $\mu V_{rms}$                |
| $\Delta V_R$              | Reverse Breakdown<br>Voltage Long Term<br>Stability           | t = 1000  hrs<br>$T = 25^{\circ}\text{C} \pm 0.1^{\circ}\text{C}$<br>$I_{R} = 100  \mu\text{A}$ | 120                 | . 3                                                         | 李老                                                          |                                               | ppm                          |
| V <sub>HYST</sub>         | Thermal Hysteresis (Note 8)                                   | $\Delta T = -40^{\circ}C \text{ to } +125^{\circ}C$                                             | 0.08                | 後方                                                          | m.                                                          |                                               | %                            |

# LM4040-2.5 Electrical Characteristics (Extended Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25$ °C. The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.5\%$ ,  $\pm 1.0\%$  and  $\pm 2.0\%$ , respectively.

| Symbol                    | Parameter                             | Conditions                            | Typical  | LM4040CEM3 | LM4040DEM3 | LM4040EEM3 | Units        |
|---------------------------|---------------------------------------|---------------------------------------|----------|------------|------------|------------|--------------|
|                           |                                       |                                       | (Note 4) | Limits     | Limits     | Limits     | (Limit)      |
|                           |                                       |                                       |          | (Note 5)   | (Note 5)   | (Note 5)   |              |
| V <sub>R</sub>            | Reverse Breakdown<br>Voltage          | I <sub>R</sub> = 100 μA               | 2.500    |            |            |            | V            |
|                           | Reverse Breakdown<br>Voltage          | I <sub>R</sub> = 100 μA               |          | ±12        | ±25        | ±50        | mV (max)     |
|                           | Tolerance(Note 6)                     |                                       |          | ±38        | ±63        | ±88        | mV (max)     |
| I <sub>RMIN</sub>         | Minimum Operating                     |                                       | 45       |            |            |            | μΑ           |
|                           | Current                               |                                       |          | 60         | 65         | 65         | μΑ (max)     |
|                           |                                       |                                       |          | 68         | 73         | 73         | μA (max)     |
| $\Delta V_R / \Delta T$   | Average Reverse                       | I <sub>R</sub> = 10 mA                | ±20      |            |            |            | ppm/°C       |
|                           | Breakdown Voltage<br>Temperature      | I <sub>R</sub> = 1 mA                 | ±15      | ±100       | ±150       | ±150       | ppm/°C (max) |
|                           | Coefficient (Note 6)                  | I <sub>R</sub> = 100 μA               | ±15      |            |            |            | ppm/°C       |
| $\Delta V_R / \Delta I_R$ | Reverse Breakdown Voltage Change with | $I_{RMIN} \le I_{R} \le 1 \text{ mA}$ | 0.3      |            |            |            | mV           |
|                           | Operating Current                     |                                       |          | 0.8        | 1.0        | 1.0        | mV (max)     |
|                           | Change<br>(Note 7)                    |                                       |          | 1.0        | 1.2        | 1.2        | mV (max)     |
|                           |                                       | 1 mA ≤ I <sub>R</sub> ≤ 15 mA         | 2.5      |            |            |            | mV           |
|                           |                                       |                                       |          | 6.0        | 8.0        | 8.0        | mV (max)     |
|                           |                                       |                                       |          | 8.0        | 10.0       | 10.0       | mV (max)     |

# LM4040-2.5 Electrical Characteristics (Extended Temperature Range) (Continued)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.5\%$ ,  $\pm 1.0\%$  and  $\pm 2.0\%$ , respectively.

| Symbol            | Parameter          | Conditions                                          | Typical<br>(Note 4) | LM4040CEM3<br>Limits | LM4040DEM3<br>Limits | LM4040EEM3<br>Limits | Units<br>(Limit) |
|-------------------|--------------------|-----------------------------------------------------|---------------------|----------------------|----------------------|----------------------|------------------|
|                   |                    |                                                     | ,                   | (Note 5)             | (Note 5)             | (Note 5)             | , ,              |
| Z <sub>R</sub>    | Reverse Dynamic    | $I_R = 1 \text{ mA, } f = 120 \text{ Hz,}$          | 0.3                 |                      |                      |                      | Ω                |
|                   | Impedance          | $I_{AC} = 0.1 I_{R}$                                |                     | 0.9                  | 1.1                  | 1.1                  | Ω (max)          |
| e <sub>N</sub>    | Wideband Noise     | I <sub>R</sub> = 100 μA                             | 35                  |                      |                      |                      | $\mu V_{rms}$    |
|                   |                    | 10 Hz ≤ f ≤ 10 kHz                                  |                     |                      |                      |                      |                  |
| $\Delta V_R$      | Reverse Breakdown  | t = 1000 hrs                                        |                     |                      |                      |                      |                  |
|                   | Voltage Long Term  | $T = 25^{\circ}C \pm 0.1^{\circ}C$                  | 120                 |                      |                      |                      | ppm              |
|                   | Stability          | I <sub>R</sub> = 100 μA                             |                     |                      |                      |                      |                  |
| V <sub>HYST</sub> | Thermal Hysteresis | $\Delta T = -40^{\circ}C \text{ to } +125^{\circ}C$ | 0.08                |                      |                      |                      | %                |
|                   | (Note 8)           |                                                     | 0.00                |                      |                      |                      | 76               |

# LM4040-3.0 Electrical Characteristics (Industrial Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25$ °C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.1\%$  and  $\pm 0.2\%$ , respectively.

| Symbol                  | Parameter                   | Conditions                                | Typical<br>(Note 4) | LM4040AIM3<br>LM4040AIZ<br>(Limit)<br>(Note 5) | LM4040BIM3<br>LM4040BIZ<br>LM4040BIM7<br>Limits<br>(Note 5) | Units<br>(Limit) |
|-------------------------|-----------------------------|-------------------------------------------|---------------------|------------------------------------------------|-------------------------------------------------------------|------------------|
| V <sub>R</sub>          | Reverse Breakdown Voltage   | I <sub>R</sub> = 100 μA                   | 3.000               |                                                |                                                             | V                |
|                         | Reverse Breakdown Voltage   | I <sub>R</sub> = 100 μA                   |                     | ±3.0                                           | ±6.0                                                        | mV (max)         |
|                         | Tolerance (Note 6)          |                                           |                     | ±22                                            | ±26                                                         | mV (max)         |
| I <sub>RMIN</sub>       | Minimum Operating Current   |                                           | 47                  |                                                |                                                             | μΑ               |
|                         |                             |                                           |                     | 62                                             | 62                                                          | μA (max)         |
|                         |                             |                                           |                     | 67                                             | 67                                                          | μA (max)         |
| $\Delta V_R/\Delta T$   | Average Reverse Breakdown   | I <sub>R</sub> = 10 mA                    | ±20                 |                                                |                                                             | ppm/°C           |
|                         | Voltage Temperature         | I <sub>R</sub> = 1 mA                     | ±15                 | ±100                                           | ±100                                                        | ppm/°C (max)     |
|                         | Coefficient (Note 6)        | I <sub>R</sub> = 100 μA                   | ±15                 |                                                |                                                             | ppm/°C           |
| $\Delta V_R/\Delta I_R$ | Reverse Breakdown Voltage   | I <sub>RMIN</sub> ≤ I <sub>R</sub> ≤ 1 mA | 0.6                 |                                                |                                                             | mV               |
|                         | Change with Operating       |                                           |                     | 0.8                                            | 0.8                                                         | mV (max)         |
|                         | Current Change (Note 7)     |                                           |                     | 1.1                                            | 1.1                                                         | mV (max)         |
|                         |                             | 1 mA ≤ I <sub>R</sub> ≤ 15 mA             | 2.7                 |                                                |                                                             | mV               |
|                         |                             |                                           |                     | 6.0                                            | 6.0                                                         | mV (max)         |
|                         |                             |                                           |                     | 9.0                                            | 9.0                                                         | mV (max)         |
| Z <sub>R</sub>          | Reverse Dynamic             | I <sub>B</sub> = 1 mA, f = 120 Hz,        | 0.4                 |                                                |                                                             | Ω                |
|                         | Impedance                   | I <sub>AC</sub> = 0.1 I <sub>R</sub>      |                     | 0.9                                            | 0.9                                                         | $\Omega$ (max)   |
| e <sub>N</sub>          | Wideband Noise              | I <sub>R</sub> = 100 μA                   | 35                  |                                                |                                                             | $\mu V_{rms}$    |
|                         |                             | 10 Hz ≤ f ≤ 10 kHz                        |                     |                                                |                                                             |                  |
| $\Delta V_R$            | Reverse Breakdown Voltage   | t = 1000 hrs                              |                     |                                                |                                                             |                  |
|                         | Long Term Stability         | T = 25°C ±0.1°C                           | 120                 |                                                |                                                             | ppm              |
|                         |                             | $I_R = 100 \mu A$                         |                     |                                                |                                                             |                  |
| V <sub>HYST</sub>       | Thermal Hysteresis (Note 8) | $\Delta T = -40$ °C to +125°C             | 0.08                |                                                |                                                             | %                |

# LM4040-3.0 Electrical Characteristics (Industrial Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.5\%$ ,  $\pm 1.0\%$  and  $\pm 2.0\%$ , respectively.

| Symbol                    | Parameter                                                         | Conditions                                                                                     | Typical<br>(Note 4) | LM4040CIM3<br>LM4040DIZ<br>LM4040CIM7<br>Limits<br>(Note 5) | LM4040DIM3<br>LM4040DIZ<br>LM4040DIM7<br>Limits<br>(Note 5) | LM4040EIM7<br>LM4040EIZ<br>Limits<br>(Note 5) | Units<br>(Limit)             |
|---------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|------------------------------|
| $V_R$                     | Reverse Breakdown<br>Voltage                                      | I <sub>R</sub> = 100 μA                                                                        | 3.000               |                                                             |                                                             |                                               | V                            |
|                           | Reverse Breakdown<br>Voltage Tolerance<br>(Note 6)                | Ι <sub>R</sub> = 100 μΑ                                                                        |                     | ±15<br>±34                                                  | ±30<br>±59                                                  | ±60<br>±89                                    | mV (max)<br>mV (max)         |
| I <sub>RMIN</sub>         | Minimum Operating Current                                         |                                                                                                | 45                  | 60<br><b>65</b>                                             | 65<br><b>70</b>                                             | 65<br><b>70</b>                               | μΑ<br>μΑ (max)<br>μΑ (max)   |
| $\Delta V_R / \Delta T$   | Average Reverse Breakdown Voltage Temperature Coefficient(Note 6) | $I_R = 10 \text{ mA}$ $I_R = 1 \text{ mA}$ $I_R = 100 \mu\text{A}$                             | ±20<br>±15<br>±15   | ±100                                                        | ±150                                                        | ±150                                          | ppm/°C ppm/°C (max) ppm/°C   |
| $\Delta V_R / \Delta I_R$ | Reverse Breakdown<br>Voltage Change with<br>Operating Current     | I <sub>RMIN</sub> ≤ I <sub>R</sub> ≤ 1 mA                                                      | 0.4                 | 0.8                                                         | 1.10                                                        | 1.1<br>1.3                                    | mV<br>mV (max)<br>mV (max)   |
|                           | Change<br>(Note 7)                                                | 1 mA ≤ I <sub>R</sub> ≤ 15 mA                                                                  | 2.7                 | 6.0<br><b>9.0</b>                                           | 8.0<br><b>11.0</b>                                          | 8.0<br><b>11.0</b>                            | mV<br>mV (max)<br>mV (max)   |
| Z <sub>R</sub>            | Reverse Dynamic<br>Impedance                                      | $I_R = 1 \text{ mA}, f = 120 \text{ Hz}$<br>$I_{AC} = 0.1 I_R$                                 | 0.4                 | 0.9                                                         | 1.2                                                         | 1.2                                           | $\Omega$ $\Omega({\sf max})$ |
| e <sub>N</sub>            | Wideband Noise                                                    | $I_{R} = 100 \mu A$ $10 \text{ Hz} \le f \le 10 \text{ kHz}$                                   | 35                  |                                                             |                                                             |                                               | $\mu V_{rms}$                |
| $\Delta V_{R}$            | Reverse Breakdown<br>Voltage Long Term<br>Stability               | t = 1000  hrs<br>$T = 25^{\circ}\text{C} \pm 0.1^{\circ}\text{C}$<br>$I_{R} = 100 \mu\text{A}$ | 120                 |                                                             |                                                             |                                               | ppm                          |
| V <sub>HYST</sub>         | Thermal Hysteresis (Note 8)                                       | $\Delta T = -40^{\circ}C \text{ to } +125^{\circ}C$                                            | 0.08                |                                                             |                                                             |                                               | %                            |

### LM4040-3.0 Electrical Characteristics (Extended Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.5\%$ ,  $\pm 1.0\%$  and  $\pm 2.0\%$ , respectively.

| Symbol            | Parameter         | Conditions              | Typical  | LM4040CEM3 | LM4040DEM3 | LM4040EEM3 | Units         |
|-------------------|-------------------|-------------------------|----------|------------|------------|------------|---------------|
|                   |                   |                         | (Note 4) | Limits     | Limits     | Limits     | (Limit)       |
|                   |                   |                         |          | (Note 5)   | (Note 5)   | (Note 5)   |               |
| V <sub>R</sub>    | Reverse Breakdown | I <sub>R</sub> = 100 μA | 3.000    |            |            |            | V             |
|                   | Voltage           |                         |          |            |            |            |               |
|                   | Reverse Breakdown | I <sub>R</sub> = 100 μA |          | ±15        | ±30        | ±60        | mV (max)      |
|                   | Voltage           |                         |          | +45        | +75        | +105       | ma\/ (ma a.v) |
|                   | Tolerance(Note 6) |                         |          | ±45        | ±75        | ±105       | mV (max)      |
| I <sub>RMIN</sub> | Minimum Operating |                         | 47       |            |            |            | μA            |
|                   | Current           |                         |          | 62         | 67         | 67         | μA (max)      |
|                   |                   |                         |          | 70         | 75         | 75         | μA (max)      |

# LM4040-3.0 Electrical Characteristics (Extended Temperature Range) (Continued)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades C, D and E designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.5\%$ ,  $\pm 1.0\%$  and  $\pm 2.0\%$ , respectively.

| -                         | 1                                        | 0.070, ±1.                                          |          |          |            | 1.14040555110 | 11.21.        |
|---------------------------|------------------------------------------|-----------------------------------------------------|----------|----------|------------|---------------|---------------|
| Symbol                    | Parameter                                | Conditions                                          | Typical  |          | LM4040DEM3 | LM4040EEM3    | Units         |
|                           |                                          |                                                     | (Note 4) | Limits   | Limits     | Limits        | (Limit)       |
|                           |                                          |                                                     |          | (Note 5) | (Note 5)   | (Note 5)      |               |
| $\Delta V_R/\Delta T$     | Average Reverse                          | I <sub>R</sub> = 10 mA                              | ±20      |          |            |               | ppm/°C        |
|                           | Breakdown Voltage Temperature            | I <sub>R</sub> = 1 mA                               | ±15      | ±100     | ±150       | ±150          | ppm/°C (max)  |
|                           | Coefficient (Note 6)                     | I <sub>R</sub> = 100 μA                             | ±15      |          |            |               | ppm/°C        |
| $\Delta V_R / \Delta I_R$ | Reverse Breakdown                        | $I_{RMIN} \le I_{R} \le 1 \text{ mA}$               | 0.4      |          |            |               | mV            |
|                           | Voltage Change with<br>Operating Current |                                                     |          | 0.8      | 1.1        | 1.1           | mV (max)      |
|                           | Change<br>(Note 7)                       |                                                     |          | 1.1      | 1.3        | 1.3           | mV (max)      |
|                           |                                          | 1 mA ≤ I <sub>R</sub> ≤ 15 mA                       | 2.7      |          |            |               | mV            |
|                           |                                          |                                                     |          | 6.0      | 8.0        | 8.0           | mV (max)      |
|                           |                                          |                                                     |          | 9.0      | 11.0       | 11.0          | mV (max)      |
| Z <sub>R</sub>            | Reverse Dynamic                          | $I_R = 1 \text{ mA, f} = 120 \text{ Hz,}$           | 0.4      | 4        |            |               | Ω             |
|                           | Impedance                                | $I_{AC} = 0.1 I_{R}$                                |          | 0.9      | 1.2        | 1.2           | Ω (max)       |
| e <sub>N</sub>            | Wideband Noise                           | I <sub>R</sub> = 100 μA                             | 35       | 75c 37c  | 5          |               | $\mu V_{rms}$ |
|                           |                                          | 10 Hz ≤ f ≤ 10 kHz                                  | 3        | 19       |            |               |               |
| $\Delta V_R$              | Reverse Breakdown                        | t = 1000 hrs                                        |          | -Win     |            |               |               |
|                           | Voltage Long Term                        | T = 25°C ±0.1°C                                     | 120      | .0,      |            |               | ppm           |
|                           | Stability                                | I <sub>R</sub> = 100 μA                             |          |          |            |               |               |
| $V_{HYST}$                | Thermal Hysteresis (Note 8)              | $\Delta T = -40^{\circ}C \text{ to } +125^{\circ}C$ | 0.08     |          |            |               | %             |

### LM4040-4.1 Electrical Characteristics (Industrial Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades A and B designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.1\%$  and  $\pm 0.2\%$ , respectively.

| Symbol                    | Parameter                 | Conditions                            | Typical  | LM4040AIM3 | LM4040BIM3 | Units        |
|---------------------------|---------------------------|---------------------------------------|----------|------------|------------|--------------|
|                           |                           |                                       | (Note 4) | LM4040AIZ  | LM4040BIZ  | (Limit)      |
|                           |                           |                                       |          | Limits     | LM4040BIM7 |              |
|                           |                           |                                       |          | (Note 5)   | Limits     |              |
|                           |                           |                                       |          |            | (Note 5)   |              |
| $V_R$                     | Reverse Breakdown Voltage | $I_R = 100 \mu A$                     | 4.096    |            |            | V            |
|                           | Reverse Breakdown Voltage | $I_R = 100 \mu A$                     |          | ±4.1       | ±8.2       | mV (max)     |
|                           | Tolerance (Note 6)        |                                       |          | ±31        | ±35        | mV (max)     |
| I <sub>RMIN</sub>         | Minimum Operating Current |                                       | 50       |            |            | μΑ           |
|                           |                           |                                       |          | 68         | 68         | μA (max)     |
|                           |                           |                                       |          | 73         | 73         | μA (max)     |
| $\Delta V_R / \Delta T$   | Average Reverse Breakdown | I <sub>R</sub> = 10 mA                | ±30      |            |            | ppm/°C       |
|                           | Voltage Temperature       | $I_R = 1 \text{ mA}$                  | ±20      | ±100       | ±100       | ppm/°C (max) |
|                           | Coefficient(Note 6)       | $I_R = 100 \mu A$                     | ±20      |            |            | ppm/°C       |
| $\Delta V_R / \Delta I_R$ | Reverse Breakdown Voltage | $I_{RMIN} \le I_{R} \le 1 \text{ mA}$ | 0.5      |            |            | mV           |
|                           | Change with Operating     |                                       |          | 0.9        | 0.9        | mV (max)     |
|                           | Current Change (Note 7)   |                                       |          | 1.2        | 1.2        | mV (max)     |
|                           |                           | 1 mA ≤ I <sub>R</sub> ≤ 15 mA         | 3.0      |            |            | mV           |
|                           |                           |                                       |          | 7.0        | 7.0        | mV (max)     |
|                           |                           |                                       |          | 10.0       | 10.0       | mV (max)     |

# LM4040-4.1 Electrical Characteristics (Industrial Temperature Range) (Continued)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades A and B designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.1\%$  and  $\pm 0.2\%$ , respectively.

| Symbol            | Parameter                                        | Conditions                                                 | Typical<br>(Note 4) | LM4040AIM3<br>LM4040AIZ<br>Limits<br>(Note 5) | LM4040BIM3<br>LM4040BIZ<br>LM4040BIM7<br>Limits<br>(Note 5) | Units<br>(Limit) |
|-------------------|--------------------------------------------------|------------------------------------------------------------|---------------------|-----------------------------------------------|-------------------------------------------------------------|------------------|
| Z <sub>R</sub>    | Reverse Dynamic<br>Impedance                     | I <sub>R</sub> = 1 mA, f = 120 Hz,                         | 0.5                 | 1.0                                           | 1.0                                                         | Ω                |
|                   | '                                                | $I_{AC} = 0.1 I_{R}$                                       |                     | 1.0                                           | 1.0                                                         | Ω (max)          |
| e <sub>N</sub>    | Wideband Noise                                   | I <sub>R</sub> = 100 μA                                    | 80                  |                                               |                                                             | $\mu V_{rms}$    |
|                   |                                                  | 10 Hz ≤ f ≤ 10 kHz                                         |                     |                                               |                                                             |                  |
| $\Delta V_{R}$    | Reverse Breakdown Voltage<br>Long Term Stability | t = 1000 hrs<br>T = 25°C ±0.1°C<br>I <sub>R</sub> = 100 μA | 120                 |                                               |                                                             | ppm              |
| V <sub>HYST</sub> | Thermal Hysteresis (Note 8)                      | $\Delta T = -40^{\circ}C \text{ to } +125^{\circ}C$        | 0.08                |                                               |                                                             | %                |



# LM4040-4.1

Electrical Characteristics (Industrial Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades C and D designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.5\%$  and  $\pm 1.0\%$ , respectively.

| Symbol                    | Parameter                      | Conditions                                | Typical<br>(Note 4) | LM4040CIM3<br>LM4040CIZ<br>LM4040CIM7 | LM4040DIM3<br>LM4040BIZ<br>LM4040DIM7 | Units<br>(Limit) |
|---------------------------|--------------------------------|-------------------------------------------|---------------------|---------------------------------------|---------------------------------------|------------------|
|                           |                                |                                           |                     | Limits                                | Limits                                |                  |
|                           |                                |                                           |                     | (Note 5)                              | (Note 5)                              |                  |
| $V_R$                     | Reverse Breakdown Voltage      | $I_R = 100 \mu A$                         | 4.096               |                                       |                                       | V                |
|                           | Reverse Breakdown Voltage      | $I_R = 100 \mu A$                         |                     | ±20                                   | ±41                                   | mV (max)         |
|                           | Tolerance (Note 6)             |                                           |                     | ±47                                   | ±81                                   | mV (max)         |
| I <sub>RMIN</sub>         | Minimum Operating Current      |                                           | 50                  |                                       |                                       | μΑ               |
|                           |                                |                                           |                     | 68                                    | 73                                    | μA (max)         |
|                           |                                |                                           |                     | 73                                    | 78                                    | μA (max)         |
| $\Delta V_R/\Delta T$     | Average Reverse Breakdown      | I <sub>R</sub> = 10 mA                    | ±30                 |                                       |                                       | ppm/°C           |
|                           | Voltage Temperature            | I <sub>R</sub> = 1 mA                     | ±20                 | ±100                                  | ±150                                  | ppm/°C (max)     |
|                           | Coefficient (Note 6)           | I <sub>R</sub> = 100 μA                   | ±20                 |                                       |                                       | ppm/°C           |
| $\Delta V_R / \Delta I_R$ | Reverse Breakdown Voltage      | $I_{RMIN} \le I_{R} \le 1 \text{ mA}$     | 0.5                 |                                       |                                       | mV               |
|                           | Change with Operating          |                                           |                     | 0.9                                   | 1.2                                   | mV (max)         |
|                           | Current Change (Note 7)        |                                           | 4.                  | 1.2                                   | 1.5                                   | mV (max)         |
|                           |                                | 1 mA ≤ I <sub>R</sub> ≤ 15 mA             | 3.0                 |                                       |                                       | mV               |
|                           |                                | 90                                        | 3                   | 7.0                                   | 9.0                                   | mV (max)         |
|                           |                                | 132                                       | OU                  | 10.0                                  | 13.0                                  | mV (max)         |
| Z <sub>R</sub>            | Reverse Dynamic                | $I_R = 1 \text{ mA, f} = 120 \text{ Hz,}$ | 0.5                 |                                       |                                       | Ω                |
|                           | Impedance                      | $I_{AC} = 0.1 I_{R}$                      |                     | 1.0                                   | 1.3                                   | $\Omega$ (max)   |
| e <sub>N</sub>            | Wideband Noise                 | I <sub>R</sub> = 100 μA                   | 80                  |                                       |                                       | $\mu V_{rms}$    |
|                           |                                | 10 Hz ≤ f ≤ 10 kHz                        |                     |                                       |                                       |                  |
| $\Delta V_R$              | Reverse Breakdown Voltage      | t = 1000 hrs                              | 120                 |                                       |                                       | ppm              |
|                           | Long Term Stability            | $T = 25^{\circ}C \pm 0.1^{\circ}C$        |                     |                                       |                                       |                  |
|                           |                                | l <sub>R</sub> = 100 μA                   |                     |                                       |                                       |                  |
| V <sub>HYST</sub>         | Thermal Hysteresis<br>(Note 8) | $\Delta T = -40$ °C to +125°C             | 0.08                |                                       |                                       | %                |

### LM4040-5.0

Electrical Characteristics (Industrial Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}$ C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.1\%$  and  $\pm 0.2\%$ , respectively.

| Symbol                  | Parameter                 | Conditions                                          | Typical<br>(Note 4) | LM4040AIM3<br>LM4040AIZ<br>Limits<br>(Note 5) | LM4040BIM3<br>LM4040BIZ<br>LM4040BIM7<br>Limits<br>(Note 5) | Units<br>(Limit) |
|-------------------------|---------------------------|-----------------------------------------------------|---------------------|-----------------------------------------------|-------------------------------------------------------------|------------------|
| V <sub>R</sub>          | Reverse Breakdown Voltage | I <sub>R</sub> = 100 μA                             | 5.000               |                                               |                                                             | V                |
|                         | Reverse Breakdown Voltage | I <sub>R</sub> = 100 μA                             |                     | ±5.0                                          | ±10                                                         | mV (max)         |
|                         | Tolerance (Note 6)        |                                                     |                     | ±38                                           | ±43                                                         | mV (max)         |
| I <sub>RMIN</sub>       | Minimum Operating Current |                                                     | 54                  |                                               |                                                             | μΑ               |
|                         |                           |                                                     |                     | 74                                            | 74                                                          | μA (max)         |
|                         |                           |                                                     |                     | 80                                            | 80                                                          | μA (max)         |
| $\Delta V_R/\Delta T$   | Average Reverse Breakdown | I <sub>R</sub> = 10 mA                              | ±30                 |                                               |                                                             | ppm/°C           |
|                         | Voltage Temperature       | I <sub>R</sub> = 1 mA                               | ±20                 | ±100                                          | ±100                                                        | ppm/°C (max)     |
|                         | Coefficient (Note 6)      | I <sub>R</sub> = 100 μA                             | ±20                 |                                               |                                                             | ppm/°C           |
| $\Delta V_R/\Delta I_R$ | Reverse Breakdown Voltage | $I_{RMIN} \le I_{R} \le 1 \text{ mA}$               | 0.5                 |                                               |                                                             | mV               |
|                         | Change with Operating     |                                                     |                     | 1.0                                           | 1.0                                                         | mV (max)         |
|                         | Current Change (Note 7)   |                                                     |                     | 1.4                                           | 1.4                                                         | mV (max)         |
|                         |                           | 1 mA ≤ I <sub>R</sub> ≤ 15 mA                       | 3.5                 | - 18 ar                                       | - 17                                                        | mV               |
|                         |                           |                                                     | 90                  | 8.0                                           | 8.0                                                         | mV (max)         |
|                         |                           |                                                     | 132                 | 12.0                                          | 12.0                                                        | mV (max)         |
| Z <sub>R</sub>          | Reverse Dynamic           | $I_R = 1 \text{ mA, f} = 120 \text{ Hz,}$           | 0.5                 |                                               |                                                             | Ω                |
|                         | Impedance                 | I <sub>AC</sub> = 0.1 I <sub>R</sub>                |                     | 1.1                                           | 1.1                                                         | $\Omega$ (max)   |
| e <sub>N</sub>          | Wideband Noise            | I <sub>R</sub> = 100 μA                             | 80                  |                                               |                                                             | $\mu V_{rms}$    |
|                         |                           | 10 Hz ≤ f ≤ 10 kHz                                  |                     |                                               |                                                             |                  |
| $\Delta V_R$            | Reverse Breakdown Voltage | t = 1000 hrs                                        |                     |                                               |                                                             |                  |
|                         | Long Term Stability       | $T = 25^{\circ}C \pm 0.1^{\circ}C$                  | 120                 |                                               |                                                             | ppm              |
|                         |                           | l <sub>R</sub> = 100 μA                             |                     |                                               |                                                             |                  |
| V <sub>HYST</sub>       | Thermal Hysteresis        | $\Delta T = -40^{\circ}C \text{ to } +125^{\circ}C$ | 0.08                |                                               |                                                             | %                |
|                         | (Note 8)                  |                                                     | 0.06                |                                               |                                                             | 70               |

# LM4040-5.0

Electrical Characteristics (Industrial Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades C and D designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.5\%$  and  $\pm 1.0\%$ , respectively.

| Symbol                    | Parameter                      | Conditions                                          | Typical<br>(Note 4) | LM4040CIM3<br>LM4040CIZ<br>LM4040CIM7<br>Limits<br>(Note 5) | LM4040DIM3<br>LM4040BIZ<br>LM4040DIM7<br>Limits<br>(Note 5) | Units<br>(Limit) |
|---------------------------|--------------------------------|-----------------------------------------------------|---------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------|
| V <sub>R</sub>            | Reverse Breakdown Voltage      | I <sub>R</sub> = 100 μA                             | 5.000               |                                                             |                                                             | V                |
|                           | Reverse Breakdown Voltage      | I <sub>R</sub> = 100 μA                             |                     | ±25                                                         | ±50                                                         | mV (max)         |
|                           | Tolerance (Note 6)             |                                                     |                     | ±58                                                         | ±99                                                         | mV (max)         |
| I <sub>RMIN</sub>         | Minimum Operating Current      |                                                     | 54                  |                                                             |                                                             | μΑ               |
|                           |                                |                                                     |                     | 74                                                          | 79                                                          | μA (max)         |
|                           |                                |                                                     |                     | 80                                                          | 85                                                          | μA (max)         |
| $\Delta V_R / \Delta T$   | Average Reverse Breakdown      | I <sub>R</sub> = 10 mA                              | ±30                 |                                                             |                                                             | ppm/°C           |
|                           | Voltage Temperature            | I <sub>R</sub> = 1 mA                               | ±20                 | ±100                                                        | ±150                                                        | ppm/°C (max)     |
|                           | Coefficient (Note 6)           | $I_R = 100 \mu A$                                   | ±20                 |                                                             |                                                             | ppm/°C           |
| $\Delta V_R / \Delta I_R$ | Reverse Breakdown Voltage      | $I_{RMIN} \le I_{R} \le 1 \text{ mA}$               | 0.5                 |                                                             |                                                             | mV               |
|                           | Change with Operating          |                                                     |                     | 1.0                                                         | 1.3                                                         | mV (max)         |
|                           | Current Change (Note 7)        |                                                     | 4.                  | 1.4                                                         | 1.8                                                         | mV (max)         |
|                           |                                | 1 mA ≤ I <sub>R</sub> ≤ 15 mA                       | 3.5                 |                                                             |                                                             | mV               |
|                           |                                | 90                                                  | 3                   | 8.0                                                         | 10.0                                                        | mV (max)         |
|                           |                                | 132                                                 | OL                  | 12.0                                                        | 15.0                                                        | mV (max)         |
| Z <sub>R</sub>            | Reverse Dynamic                | $I_R = 1 \text{ mA, f} = 120 \text{ Hz,}$           | 0.5                 |                                                             |                                                             | Ω                |
|                           | Impedance                      | $I_{AC} = 0.1 I_{R}$                                |                     | 1.1                                                         | 1.5                                                         | $\Omega$ (max)   |
| e <sub>N</sub>            | Wideband Noise                 | I <sub>R</sub> = 100 μA                             | 80                  |                                                             |                                                             | $\mu V_{rms}$    |
|                           |                                | 10 Hz $\leq$ f $\leq$ 10 kHz                        |                     |                                                             |                                                             |                  |
| $\Delta V_R$              | Reverse Breakdown Voltage      | t = 1000 hrs                                        |                     |                                                             |                                                             |                  |
|                           | Long Term Stability            | $T = 25^{\circ}C \pm 0.1^{\circ}C$                  | 120                 |                                                             |                                                             | ppm              |
|                           |                                | i <sub>R</sub> = 100 μA                             |                     |                                                             |                                                             |                  |
| V <sub>HYST</sub>         | Thermal Hysteresis<br>(Note 8) | $\Delta T = -40^{\circ}C \text{ to } +125^{\circ}C$ | 0.08                |                                                             |                                                             | %                |

# LM4040-5.0

Electrical Characteristics (Extended Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades C and D designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.5\%$  and  $\pm 1.0\%$ , respectively.

| verse Breakdown Voltage verse Breakdown Voltage verse Breakdown Voltage erance(Note 6) imum Operating Current erage Reverse akdown Voltage | ** '                                                                  | (Note 4)<br>5.000<br>54                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Limits (Note 5)  ±25 ±75  74 83                                                                                                                                                                                                                                                                                                                               | Limits (Note 5)  ±50 ±125  79 88                                                                                                                                                                                                                                                                                                            | V mV (max) mV (max) μA μA (max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| verse Breakdown Voltage erance(Note 6) imum Operating Current erage Reverse akdown Voltage                                                 | I <sub>R</sub> = 100 μA                                               | 5.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ±25<br><b>±75</b>                                                                                                                                                                                                                                                                                                                                             | ±50<br>±125                                                                                                                                                                                                                                                                                                                                 | mV (max)<br>mV (max)<br>μΑ<br>μΑ (max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| verse Breakdown Voltage erance(Note 6) imum Operating Current erage Reverse akdown Voltage                                                 | I <sub>R</sub> = 100 μA                                               | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>±75</b> 74                                                                                                                                                                                                                                                                                                                                                 | <b>±125</b> 79                                                                                                                                                                                                                                                                                                                              | mV (max)<br>mV (max)<br>μΑ<br>μΑ (max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| erance(Note 6) imum Operating Current erage Reverse akdown Voltage                                                                         |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>±75</b> 74                                                                                                                                                                                                                                                                                                                                                 | <b>±125</b> 79                                                                                                                                                                                                                                                                                                                              | mV (max)<br>μΑ<br>μΑ (max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| imum Operating Current<br>erage Reverse<br>akdown Voltage                                                                                  | I <sub>R</sub> = 10 mA                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 74                                                                                                                                                                                                                                                                                                                                                            | 79                                                                                                                                                                                                                                                                                                                                          | μΑ<br>μΑ (max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| erage Reverse<br>akdown Voltage                                                                                                            | I <sub>R</sub> = 10 mA                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                           | μΑ (max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| akdown Voltage                                                                                                                             | I <sub>R</sub> = 10 mA                                                | ±30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                           | . ` ′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| akdown Voltage                                                                                                                             | I <sub>R</sub> = 10 mA                                                | ±30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 83                                                                                                                                                                                                                                                                                                                                                            | 88                                                                                                                                                                                                                                                                                                                                          | A ()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| akdown Voltage                                                                                                                             | I <sub>R</sub> = 10 mA                                                | ±30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                             | μA (max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| · ·                                                                                                                                        |                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                             | ppm/°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| nperature Coefficient                                                                                                                      | I <sub>R</sub> = 1 mA                                                 | ±20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±100                                                                                                                                                                                                                                                                                                                                                          | ±150                                                                                                                                                                                                                                                                                                                                        | ppm/°C (max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| te 6)                                                                                                                                      | I <sub>R</sub> = 100 μA                                               | ±20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                             | ppm/°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| verse Breakdown Voltage                                                                                                                    | $I_{RMIN} \le I_{R} \le 1 \text{ mA}$                                 | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                             | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ange with Operating                                                                                                                        |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                                                           | 1.0                                                                                                                                                                                                                                                                                                                                         | mV (max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| rent Change (Note 7)                                                                                                                       |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.4                                                                                                                                                                                                                                                                                                                                                           | 1.8                                                                                                                                                                                                                                                                                                                                         | mV (max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                            | 1 mA ≤ I <sub>R</sub> ≤ 15 mA                                         | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 44                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                             | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                            |                                                                       | a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.0                                                                                                                                                                                                                                                                                                                                                           | 8.0                                                                                                                                                                                                                                                                                                                                         | mV (max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                            |                                                                       | 36 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.0                                                                                                                                                                                                                                                                                                                                                          | 15.0                                                                                                                                                                                                                                                                                                                                        | mV (max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| erse Dynamic                                                                                                                               | $I_R = 1$ mA, f = 120 Hz, $I_{AC} =$                                  | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                             | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| edance                                                                                                                                     | 0.1 l <sub>R</sub>                                                    | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.1                                                                                                                                                                                                                                                                                                                                                           | 1.1                                                                                                                                                                                                                                                                                                                                         | Ω (max)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| leband Noise                                                                                                                               | I <sub>R</sub> = 100 μA                                               | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                             | $\mu V_{rms}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                            | 10 Hz ≤ f ≤ 10 kHz                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| verse Breakdown Voltage                                                                                                                    | t = 1000 hrs                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| g Term Stability                                                                                                                           |                                                                       | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                             | ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                            | $\Delta T = -40^{\circ} \text{C to } +125^{\circ} \text{C}$           | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                             | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| le<br>/e                                                                                                                                   | dance band Noise erse Breakdown Voltage Term Stability mal Hysteresis | dance $\begin{array}{c} \text{dance} & \text{0.1 I}_{\text{R}} \\ \text{band Noise} & \text{I}_{\text{R}} = 100 \; \mu\text{A} \\ \text{10 Hz} \leq \text{f} \leq \text{10 kHz} \\ \text{erse Breakdown Voltage} & \text{t} = 1000 \; \text{hrs} \\ \text{Term Stability} & \text{T} = 25^{\circ}\text{C} \; \pm 0.1^{\circ}\text{C} \\ \text{I}_{\text{R}} = 100 \; \mu\text{A} \\ \text{mal Hysteresis} & \Delta T = -40^{\circ}\text{C to} + 125^{\circ}\text{C} \\ \end{array}$ | erse Dynamic dance $\begin{array}{c} I_{R}=1\text{ mA, f}=120\text{ Hz, }I_{AC}=\\ 0.1I_{R}\\ \text{band Noise} \\ I_{R}=100\mu\text{A}\\ 10\text{ Hz}\leq\text{f}\leq10\text{ kHz} \\ \text{erse Breakdown Voltage} \\ \text{i Term Stability} \\ T=25^{\circ}\text{C}\pm0.1^{\circ}\text{C}\\ I_{R}=100\mu\text{A} \\ \text{mal Hysteresis} \\ \end{array}$ | erse Dynamic dance $I_R = 1 \text{ mA}, f = 120 \text{ Hz}, I_{AC} = 0.5$ dance $0.1 I_R$ $1.1$ bland Noise $I_R = 100 \mu\text{A}$ 80 $10 \text{Hz} \le f \le 10 \text{kHz}$ erse Breakdown Voltage $I_R = 1000 \text{hrs}$ $I_R = 100 \mu\text{A}$ $I_R = 100 \mu\text{A}$ mal Hysteresis $I_R = 100 \mu\text{A}$ $I_R = 100 \mu\text{A}$ | erse Dynamic dance $I_R = 1 \text{ mA}, f = 120 \text{ Hz}, I_{AC} = 0.5$ dance $0.1 I_R$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ $1.1$ |

# LM4040-8.2

Electrical Characteristics (Industrial Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}$ C. The grades A and B designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.1\%$  and  $\pm 0.2\%$ , respectively.

| Symbol                    | Parameter                 | Conditions                                          | Typical<br>(Note 4) | LM4040AIM3 LM4040AIZ Limits (Note 5) | LM4040BIM3<br>LM4040BIZ<br>Limits<br>(Note 5) | Units<br>(Limit) |
|---------------------------|---------------------------|-----------------------------------------------------|---------------------|--------------------------------------|-----------------------------------------------|------------------|
| V <sub>R</sub>            | Reverse Breakdown Voltage | I <sub>R</sub> = 150 μA                             | 8.192               |                                      |                                               | V                |
|                           | Reverse Breakdown Voltage | I <sub>R</sub> = 150 μA                             |                     | ±8.2                                 | ±16                                           | mV (max)         |
|                           | Tolerance (Note 6)        |                                                     |                     | ±61                                  | ±70                                           | mV (max)         |
| I <sub>RMIN</sub>         | Minimum Operating Current |                                                     | 67                  |                                      |                                               | μΑ               |
|                           |                           |                                                     |                     | 91                                   | 91                                            | μA (max)         |
|                           |                           |                                                     |                     | 95                                   | 95                                            | μA (max)         |
| $\Delta V_R/\Delta T$     | Average Reverse Breakdown | I <sub>R</sub> = 10 mA                              | ±40                 |                                      |                                               | ppm/°C           |
|                           | Voltage Temperature       | I <sub>R</sub> = 1 mA                               | ±20                 | ±100                                 | ±100                                          | ppm/°C (max)     |
|                           | Coefficient(Note 6)       | I <sub>R</sub> = 150 μA                             | ±20                 |                                      |                                               | ppm/°C           |
| $\Delta V_R / \Delta I_R$ | Reverse Breakdown Voltage | $I_{RMIN} \le I_{R} \le 1 \text{ mA}$               | 0.6                 |                                      |                                               | mV               |
|                           | Change with Operating     |                                                     |                     | 1.3                                  | 1.3                                           | mV (max)         |
|                           | Current Change (Note 7)   |                                                     | m. 40               | 2.5                                  | 2.5                                           | mV (max)         |
|                           |                           | 1 mA ≤ I <sub>R</sub> ≤ 15 mA                       | 7.0                 | Chin                                 |                                               | mV               |
|                           |                           | 180                                                 | J. W                | 10.0                                 | 10.0                                          | mV (max)         |
|                           |                           | 130                                                 | -O,,                | 18.0                                 | 18.0                                          | mV (max)         |
| Z <sub>R</sub>            | Reverse Dynamic           | $I_R = 1 \text{ mA, f} = 120 \text{ Hz,}$           | 0.6                 |                                      |                                               | Ω                |
|                           | Impedance                 | $I_{AC} = 0.1 I_{R}$                                |                     | 1.5                                  | 1.5                                           | $\Omega$ (max)   |
| e <sub>N</sub>            | Wideband Noise            | I <sub>R</sub> = 150 μA                             | 130                 |                                      |                                               | $\mu V_{rms}$    |
|                           |                           | <b>10</b> Hz ≤ f ≤ <b>10</b> kHz                    |                     |                                      |                                               |                  |
| $\Delta V_{R}$            | Reverse Breakdown Voltage | t = 1000 hrs                                        |                     |                                      |                                               |                  |
|                           | Long Term Stability       | $T = 25^{\circ}C \pm 0.1^{\circ}C$                  | 120                 |                                      |                                               | ppm              |
|                           |                           | I <sub>R</sub> = 150 μA                             |                     |                                      |                                               |                  |
| V <sub>HYST</sub>         | Thermal Hysteresis        | $\Delta T = -40^{\circ}C \text{ to } +125^{\circ}C$ | 0.08                |                                      |                                               | %                |
|                           | (Note 8)                  |                                                     | 0.00                |                                      |                                               | /0               |

# LM4040-8.2

Electrical Characteristics (Industrial Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades C and D designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.5\%$  and  $\pm 1.0\%$ , respectively.

| Symbol                  | Parameter                 | Conditions                                          | Typical<br>(Note 4) | LM4040CIM3 LM4040CIZ Limits (Note 5) | LM4040DIM3 LM4040DIZ Limits (Note 5) | Units<br>(Limit) |
|-------------------------|---------------------------|-----------------------------------------------------|---------------------|--------------------------------------|--------------------------------------|------------------|
| V <sub>R</sub>          | Reverse Breakdown Voltage | I <sub>R</sub> = 150 μA                             | 8.192               |                                      |                                      | V                |
|                         | Reverse Breakdown Voltage | I <sub>R</sub> = 150 μA                             |                     | ±41                                  | ±82                                  | mV (max)         |
|                         | Tolerance (Note 6)        |                                                     |                     | ±94                                  | ±162                                 | mV (max)         |
| I <sub>RMIN</sub>       | Minimum Operating Current |                                                     | 67                  |                                      |                                      | μΑ               |
|                         |                           |                                                     |                     | 91                                   | 96                                   | μΑ (max)         |
|                         |                           |                                                     |                     | 95                                   | 100                                  | μΑ (max)         |
| $\Delta V_R/\Delta T$   | Average Reverse Breakdown | I <sub>R</sub> = 10 mA                              | ±40                 |                                      |                                      | ppm/°C           |
|                         | Voltage Temperature       | I <sub>R</sub> = 1 mA                               | ±20                 | ±100                                 | ±150                                 | ppm/°C (max)     |
|                         | Coefficient (Note 6)      | I <sub>R</sub> = 150 μA                             | ±20                 |                                      |                                      | ppm/°C           |
| $\Delta V_R/\Delta I_R$ | Reverse Breakdown Voltage | $I_{RMIN} \le I_{R} \le 1 \text{ mA}$               | 0.6                 |                                      | 9                                    | mV               |
|                         | Change with Operating     |                                                     |                     | 1.3                                  | 1.7                                  | mV (max)         |
|                         | Current Change (Note 7)   |                                                     |                     | 2.5                                  | 3.0                                  | mV (max)         |
|                         |                           | $1 \text{ mA} \leq I_{R} \leq 15 \text{ mA}$        | 7.0                 | 2 13                                 |                                      | mV               |
|                         |                           |                                                     | 1 36                | 10.0                                 | 15.0                                 | mV (max)         |
|                         |                           |                                                     | 130                 | 18.0                                 | 24.0                                 | mV (max)         |
| Z <sub>R</sub>          | Reverse Dynamic           | $I_R = 1 \text{ mA, f} = 120 \text{ Hz,}$           | 0.6                 |                                      |                                      | Ω                |
|                         | Impedance                 | $I_{AC} = 0.1 I_{R}$                                |                     | 1.5                                  | 1.9                                  | $\Omega$ (max)   |
| e <sub>N</sub>          | Wideband Noise            | I <sub>R</sub> = 150 μA                             | 130                 |                                      |                                      | $\mu V_{rms}$    |
|                         |                           | 10 Hz ≤ f ≤ 10 kHz                                  |                     |                                      |                                      |                  |
| $\Delta V_R$            | Reverse Breakdown Voltage | t = 1000 hrs                                        |                     |                                      |                                      |                  |
|                         | Long Term Stability       | $T = 25^{\circ}C \pm 0.1^{\circ}C$                  | 120                 |                                      |                                      | ppm              |
|                         |                           | I <sub>R</sub> = 150 μA                             |                     |                                      |                                      |                  |
| V <sub>HYST</sub>       | Thermal Hysteresis        | $\Delta T = -40^{\circ}C \text{ to } +125^{\circ}C$ | 0.08                |                                      |                                      | %                |
|                         | (Note 8)                  |                                                     | 0.00                |                                      |                                      | /0               |

# LM4040-10.0

Electrical Characteristics (Industrial Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades A and B designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.1\%$  and  $\pm 0.2\%$ , respectively.

| Symbol                    | Parameter                 | Conditions                                          | Typical<br>(Note 4) | LM4040AIM3<br>LM4040AIZ<br>Limits<br>(Note 5) | LM4040BIM3<br>LM4040BIZ<br>Limits<br>(Note 5) | Units<br>(Limit) |
|---------------------------|---------------------------|-----------------------------------------------------|---------------------|-----------------------------------------------|-----------------------------------------------|------------------|
| V <sub>R</sub>            | Reverse Breakdown Voltage | I <sub>R</sub> = 150 μA                             | 10.00               |                                               |                                               | V                |
|                           | Reverse Breakdown Voltage | I <sub>R</sub> = 150 μA                             |                     | ±10                                           | ±20                                           | mV (max)         |
|                           | Tolerance (Note 6)        |                                                     |                     | ±75                                           | ±85                                           | mV (max)         |
| I <sub>RMIN</sub>         | Minimum Operating Current |                                                     | 75                  |                                               |                                               | μΑ               |
|                           |                           |                                                     |                     | 100                                           | 100                                           | μA (max)         |
|                           |                           |                                                     |                     | 103                                           | 103                                           | μA (max)         |
| $\Delta V_R / \Delta T$   | Average Reverse Breakdown | I <sub>R</sub> = 10 mA                              | ±40                 |                                               |                                               | ppm/°C           |
|                           | Voltage Temperature       | $I_R = 1 \text{ mA}$                                | ±20                 | ±100                                          | ±100                                          | ppm/°C (max)     |
|                           | Coefficient (Note 6)      | $I_R = 150 \mu A$                                   | ±20                 |                                               |                                               | ppm/°C           |
| $\Delta V_R / \Delta I_R$ | Reverse Breakdown Voltage | $I_{RMIN} \le I_R \le 1 \text{ mA}$                 | 0.8                 | .0                                            |                                               | mV               |
|                           | Change with Operating     |                                                     | _                   | 1.5                                           | 1.5                                           | mV (max)         |
|                           | Current Change (Note 7)   |                                                     | 71. 40              | 3.5                                           | 3.5                                           | mV (max)         |
|                           |                           | $1~\text{mA} \leq I_{\text{R}} \leq 15~\text{mA}$   | 8.0                 | Cr.                                           |                                               | mV               |
|                           |                           | 36                                                  | 3                   | 12.0                                          | 12.0                                          | mV (max)         |
|                           |                           |                                                     | "O".                | 23.0                                          | 23.0                                          | mV (max)         |
| $Z_R$                     | Reverse Dynamic           | $I_R = 1 \text{ mA, f} = 120 \text{ Hz,}$           | 0.7                 |                                               |                                               | Ω                |
|                           | Impedance                 | $I_{AC} = 0.1 I_{R}$                                |                     | 1.7                                           | 1.7                                           | $\Omega$ (max)   |
| $e_N$                     | Wideband Noise            | $I_R = 150 \mu A$                                   | 180                 |                                               |                                               | $\mu V_{rms}$    |
|                           |                           | 10 Hz ≤ f ≤ 10 kHz                                  |                     |                                               |                                               |                  |
| $\Delta V_{R}$            |                           | t = 1000 hrs                                        |                     |                                               |                                               |                  |
|                           | Long Term Stability       | $T = 25^{\circ}C \pm 0.1^{\circ}C$                  | 120                 |                                               |                                               | ppm              |
|                           |                           | I <sub>R</sub> = 150 μA                             |                     |                                               |                                               |                  |
| $V_{HYST}$                | Thermal Hysteresis        | $\Delta T = -40^{\circ}C \text{ to } +125^{\circ}C$ | 0.08                |                                               |                                               | %                |
|                           | (Note 8)                  |                                                     |                     |                                               |                                               |                  |

# LM4040-10.0

Electrical Characteristics (Industrial Temperature Range)

Boldface limits apply for  $T_A = T_J = T_{MIN}$  to  $T_{MAX}$ ; all other limits  $T_A = T_J = 25^{\circ}C$ . The grades C and D designate initial Reverse Breakdown Voltage tolerances of  $\pm 0.5\%$  and  $\pm 1.0\%$ , respectively.

| Symbol                  | Parameter                                        | Conditions                                          | Typical (Note 4) | LM4040CIM3 LM4040CIZ Limits (Note 5) | LM4040DIM3 LM4040DIZ Limits (Note 5) | Units<br>(Limit) |
|-------------------------|--------------------------------------------------|-----------------------------------------------------|------------------|--------------------------------------|--------------------------------------|------------------|
| $\overline{V_R}$        | Reverse Breakdown Voltage                        | I <sub>R</sub> = 150 μA                             | 10.00            |                                      |                                      | V                |
|                         | Reverse Breakdown Voltage                        | I <sub>R</sub> = 150 μA                             |                  | ±50                                  | ±100                                 | mV (max)         |
|                         | Tolerance (Note 6)                               |                                                     |                  | ±115                                 | ±198                                 | mV (max)         |
| I <sub>RMIN</sub>       | Minimum Operating Current                        |                                                     | 75               |                                      |                                      | μA               |
|                         |                                                  |                                                     |                  | 100                                  | 110                                  | μA (max)         |
|                         |                                                  |                                                     |                  | 103                                  | 113                                  | μA (max)         |
| $\Delta V_R/\Delta T$   | Average Reverse Breakdown                        | I <sub>R</sub> = 10 mA                              | ±40              |                                      |                                      | ppm/°C           |
|                         | Voltage Temperature                              | I <sub>R</sub> = 1 mA                               | ±20              | ±100                                 | ±150                                 | ppm/°C (max)     |
|                         | Coefficient (Note 6)                             | I <sub>R</sub> = 150 μA                             | ±20              |                                      |                                      | ppm/°C           |
| $\Delta V_R/\Delta I_R$ | Reverse Breakdown Voltage                        | $I_{RMIN} \le I_{R} \le 1 \text{ mA}$               | 0.8              |                                      | 9                                    | mV               |
|                         | Change with Operating                            |                                                     |                  | 1.5                                  | 2.0                                  | mV (max)         |
|                         | Current Change (Note 7)                          |                                                     |                  | 3.5                                  | 4.0                                  | mV (max)         |
|                         |                                                  | 1 mA ≤ I <sub>R</sub> ≤ 15 mA                       | 8.0              | 2 13                                 |                                      | mV               |
|                         |                                                  |                                                     | 132              | 12.0                                 | 18.0                                 | mV (max)         |
|                         |                                                  |                                                     | 130              | 23.0                                 | 29.0                                 | mV (max)         |
| Z <sub>R</sub>          | Reverse Dynamic                                  | $I_R = 1 \text{ mA, } f = 120 \text{ Hz,}$          | 0.7              | 0                                    |                                      | Ω                |
|                         | Impedance                                        | $I_{AC} = 0.1 I_{R}$                                |                  | 1.7                                  | 2.3                                  | $\Omega$ (max)   |
| e <sub>N</sub>          | Wideband Noise                                   | I <sub>R</sub> = 150 μA<br>10 Hz ≤ f ≤ 10 kHz       | 180              |                                      |                                      | $\mu V_{rms}$    |
| $\Delta V_R$            | Reverse Breakdown Voltage<br>Long Term Stability | t = 1000 hrs<br>T = 25°C ±0.1°C                     | 120              |                                      |                                      | ppm              |
|                         |                                                  | I <sub>R</sub> = 150 μA                             |                  |                                      |                                      |                  |
| V <sub>HYST</sub>       | Thermal Hysteresis (Note 8)                      | $\Delta T = -40^{\circ}C \text{ to } +125^{\circ}C$ | 0.08             |                                      |                                      | %                |

#### **Electrical Characteristics(Notes)**

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by  $T_{Jmax}$  (maximum junction temperature),  $\theta_{JA}$  (junction to ambient thermal resistance), and  $T_A$  (ambient temperature). The maximum allowable power dissipation at any temperature is  $PD_{max} = (T_{Jmax} - T_A)/\theta_{JA}$  or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4040,  $T_{Jmax} = 125^{\circ}\text{C}$ , and the typical thermal resistance  $(\theta_{JA})$ , when board mounted, is 326°C/W for the SOT-23 package, and 180°C/W with 0.4" lead length and 170°C/W with 0.125" lead length for the TO-92 package and 415°C/W for the SC70 Package.

Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 k $\Omega$  resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.

**Note 4:** Typicals are at  $T_J = 25^{\circ}C$  and represent most likely parametric norm.

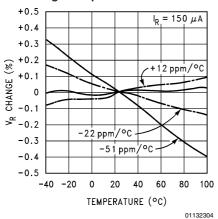
Note 5: Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL.

Note 6: The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance  $\pm [(\Delta V_R/\Delta T)(\max\Delta T)(V_R)]$ . Where,  $\Delta V_R/\Delta T$  is the  $V_R$  temperature coefficient,  $\max\Delta T$  is the maximum difference in temperature from the reference point of 25°C to  $T_{MIN}$  or  $T_{MAX}$ , and  $V_R$  is the reverse breakdown voltage. The total over-temperature tolerance for the different grades in the industrial temperature range where  $\max\Delta T = 65$ °C is shown below:

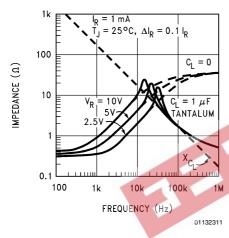
A-grade:  $\pm 0.75\% = \pm 0.1\% \pm 100 \text{ ppm/}^{\circ}\text{C x } 65^{\circ}\text{C}$ B-grade:  $\pm 0.85\% = \pm 0.2\% \pm 100 \text{ ppm/}^{\circ}\text{C x } 65^{\circ}\text{C}$ C-grade:  $\pm 1.15\% = \pm 0.5\% \pm 100 \text{ ppm/}^{\circ}\text{C x } 65^{\circ}\text{C}$ D-grade:  $\pm 1.98\% = \pm 1.0\% \pm 150 \text{ ppm/}^{\circ}\text{C x } 65^{\circ}\text{C}$ E-grade:  $\pm 2.98\% = \pm 2.0\% \pm 150 \text{ ppm/}^{\circ}\text{C x } 65^{\circ}\text{C}$ 

The total over-temperature tolerance for the different grades in the exteded temperature range where max  $\Delta T = 100$  °C is shown below:

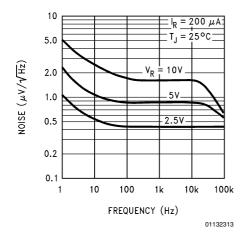
C-grade:  $\pm 1.5\% = \pm 0.5\% \pm 100 \text{ ppm/°C x } 100^{\circ}\text{C}$ D-grade:  $\pm 2.5\% = \pm 1.0\% \pm 150 \text{ ppm/°C x } 100^{\circ}\text{C}$ E-grade:  $\pm 3.5\% = \pm 2.0\% \pm 150 \text{ ppm/°C x } 100^{\circ}\text{C}$ 


Therefore, as an example, the A-grade LM4040-2.5 has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V x 0.75% = ±19 mV.

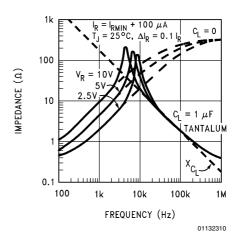
Note 7: Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.


Note 8: Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C.

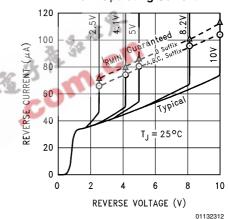
### **Typical Performance Characteristics**


#### Temperature Drift for Different Average Temperature Coefficient

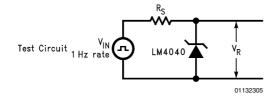


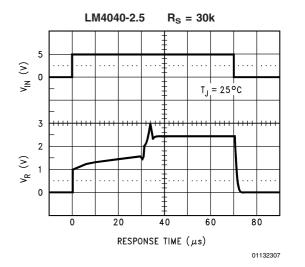

#### Output Impedance vs Frequency

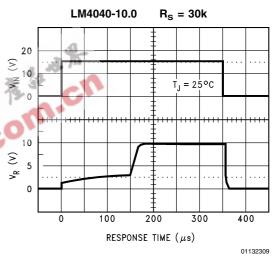



#### Noise Voltage vs Frequency

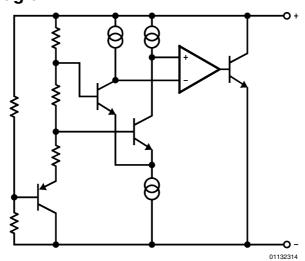



#### **Output Impedance vs Frequency**





### Reverse Characteristics and Minimum Operating Current




### **Start-Up Characteristics**







### **Functional Block Diagram**



#### **Applications Information**

The LM4040 is a precision micro-power curvature-corrected bandgap shunt voltage reference. For space critical applications, the LM4040 is available in the sub-miniature SOT-23 and SC70 surface-mount package. The LM4040 has been designed for stable operation without the need of an external capacitor connected between the "+" pin and the "-" pin. If, however, a bypass capacitor is used, the LM4040 remains stable. Reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048V, 2.500V, 3.000V, 4.096V, 5.000V, 6.000, 8.192V, and 10.000V. The minimum operating current increases from 60  $\mu\text{A}$  for the LM4040-2.048 and LM4040-2.5 to 100  $\mu\text{A}$  for the LM4040-10.0. All versions have a maximum operating current of 15 mA.

LM4040s in the SOT-23 packages have a parasitic Schottky diode between pin 2 (–) and pin 3 (Die attach interface contact). Therefore, pin 3 of the SOT-23 package must be left floating or connected to pin 2.

LM4040s in the SC70 have a parasitic Schottky diode between pin 1 (–) and pin 2 (Die attach interface contact). Therefore, pin 2 must be left floating or connected to pin1.

The 4.096V version allows single +5V 12-bit ADCs or DACs to operate with an LSB equal to 1 mV. For 12-bit ADCs or DACs that operate on supplies of 10V or greater, the 8.192V version gives 2 mV per LSB.

The typical thermal hysteresis specification is defined as the change in +25°C voltage measured after thermal cycling.

The device is thermal cycled to temperature -40°C and then measured at 25°C. Next the device is thermal cycled to temperature +125°C and again measured at 25°C. The resulting V<sub>OUT</sub> delta shift between the 25°C measurements is thermal hysteresis. Thermal hysteresis is common in precision references and is induced by thermal-mechanical package stress. Changes in environmental storage temperature, operating temperature and board mounting temperature are all factors that can contribute to thermal hysteresis.

In a conventional shunt regulator application (Figure 1) , an external series resistor ( $R_{\rm S}$ ) is connected between the supply voltage and the LM4040.  $R_{\rm S}$  determines the current that flows through the load ( $I_{\rm L}$ ) and the LM4040 ( $I_{\rm Q}$ ). Since load current and supply voltage may vary,  $R_{\rm S}$  should be small enough to supply at least the minimum acceptable  $I_{\rm Q}$  to the LM4040 even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum,  $R_{\rm S}$  should be large enough so that the current flowing through the LM4040 is less than 15 mA.

 $\rm R_S$  is determined by the supply voltage,  $\rm (V_S),$  the load and operating current, ( $\rm I_L$  and  $\rm I_Q),$  and the LM4040's reverse breakdown voltage,  $\rm V_B.$ 

$$R_S = \frac{V_S - V_R}{I_L + I_Q}$$

**Typical Applications** 

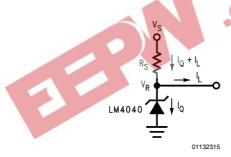



FIGURE 1. Shunt Regulator

\*Tantalum

#### Typical Applications (Continued) CAL DV<sub>CC</sub> ADC12451 12-bit cs + AV<sub>CC</sub> RD Sign WR **₹** 909Ω $8 \mu s$ √S/H 20 Analog-DB7/DB12 $V_{REF}$ to-DB6/DB12 LM4040-4.1 Digital DB5/DB12 Converter DB4/DB12 AGND DB3/DB11 DB2/DB10 DB1/DB9 DBO/DB8 3.5 MHz 01132316 \*\*Ceramic monolithic

FIGURE 2. LM4040-4.1's Nominal 4.096 breakdown voltage gives ADC12451 1 mV/LSB

### Typical Applications (Continued)

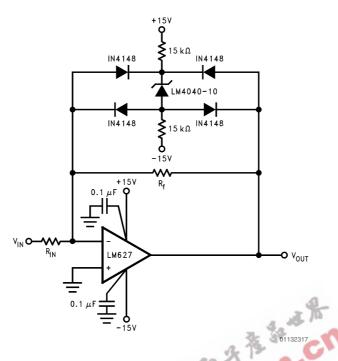



FIGURE 3. Bounded amplifier reduces saturation-induced delays and can prevent succeeding stage damage. Nominal clamping voltage is  $\pm 11.5V$  (LM4040's reverse breakdown voltage +2 diode  $V_F$ ).

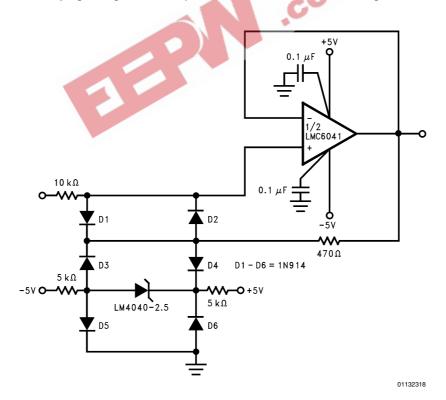



FIGURE 4. Protecting Op Amp input. The bounding voltage is  $\pm 4V$  with the LM4040-2.5 (LM4040's reverse breakdown voltage + 3 diode  $V_F$ ).

### Typical Applications (Continued)

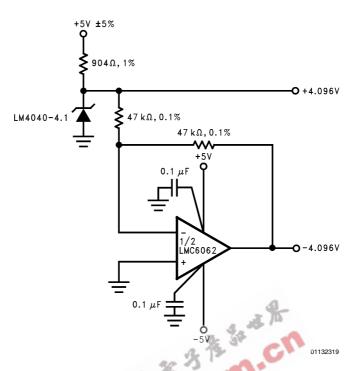



FIGURE 5. Precision ±4.096V Reference

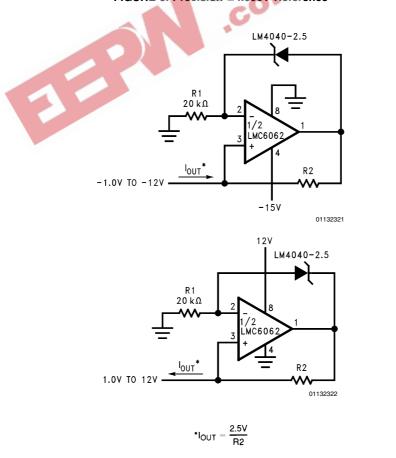
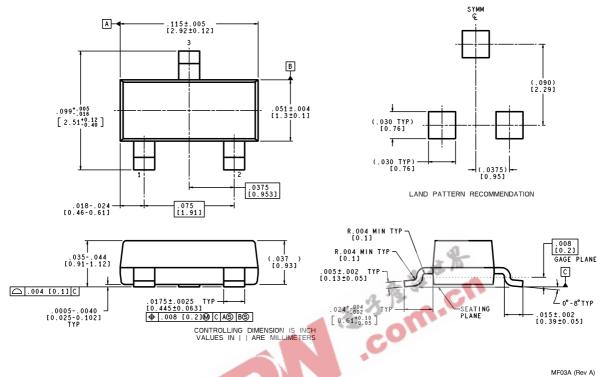
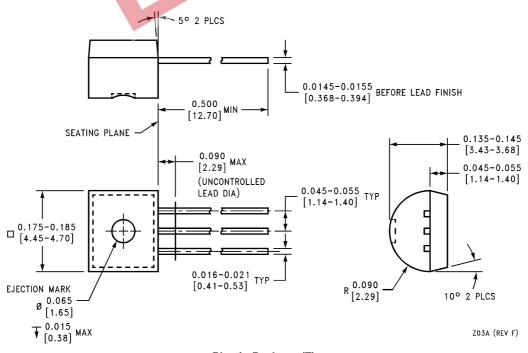





FIGURE 6. Precision 1 µA to 1 mA Current Sources

# Physical Dimensions inches (millimeters) unless otherwise noted



# Plastic Surface Mount Package (M3) NS Package Number MF03A (JEDEC Registration TO-236AB)



Plastic Package (Z) NS Package Number Z03A

#### Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 2±0.1 SYMM Ç 0.65 SYMM Ç В -(0.65)1.25±0.1 1.8-2.4 (1.9)-0.15-0.3 TYP - (0.4 TYP) 0.1M A BS CS LAND PATTERN RECOMMENDATION -(0.9)GAGE PLANE 0.8-1.1 0.2 Α <u>□</u>0.1 A 0.1-0.20 SEATING PLANE 0 - 0.10.40±0.05 0°-5° TYP -(0.515) DIMENSIONS ARE IN MILLIMETERS MAAOSA (REV B)

#### LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Molded Package (SC70) **NS Package Number MAA05A** 

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.



Email: support@nsc.com

www.national.com

#### **National Semiconductor**

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

**National Semiconductor** Asia Pacific Customer Response Group Tel: 65-2544466

Fax: 65-2504466 Email: ap.support@nsc.com **National Semiconductor** Japan Ltd.

Tel: 81-3-5639-7560 Fax: 81-3-5639-7507