

ML12009 ML12011 MECL PLL Components Dual Modulus Prescaler

Legacy Device: Motorola MC12009, MC12011

These devices are two-modulus prescalers which will divide by 5 and 6, 8 and 9, respectively. A MECL-to-MTTL translator is provided to interface directly with the Motorola MC12014 Counter Control Logic. In addition, there is a buffered clock input and MECL bias voltage source.

- ML12009 480 MHz (÷5/6), ML12011 550 MHz (÷8/9)
- MECL to MTTL Translator on Chip
- MECL and MTTL Enable Inputs
- 5.0 or -5.2 V Operation*
- Buffered Clock Input Series Input RC Typ, 20 Ω and 4.0 pF
- VBB Reference Voltage
- 310 mW (Typ)

* When using a 5.0 V supply, apply 5.0 V to Pin 1 (V_{CCO}), Pin 6 (MTTL V_{CC}), Pin 16 (V_{CC}), and ground Pin 8 (V_{EE}). When using -5.2 V supply, ground Pin 1 (V_{CCO}), Pin 6 (MTTL V_{CC}), and Pin 16 (V_{CC}) and apply -5.2 V to Pin 8 (V_{EE}). If the translator is not required, Pin 6 may be left open to conserve DC power drain.

MAXIMUM RATINGS

Characteristic	Symbol	Rating	Unit								
(Ratings above which device life may be impaired)											
Power Supply Voltage (V _{CC} = 0)	VEE	-8.0	Vdc								
Input Voltage (V _{CC} = 0)	V _{in}	0 to V _{EE}	Vdc								
Output Source Current Continuous Surge	lO	<50 <100	mAdc								
Storage Temperature Range	T _{stg}	-65 to 175	°C								
(Recommended Maximum Ratings	above which	oerformance ma	av he								

(Recommended Maximum Ratings above which performance may be degraded)

Operating Temperature Range ML12009, ML12011	т _А	-30 to 85	°C
DC Fan–Out (Note 1) (Gates and Flip–Flops)	n	70	—

NOTES: 1. AC fan-out is limited by desired system performance.

Note: Lansdale lead free (**Pb**) product, as it becomes available, will be identified by a part number prefix change from **ML** to **MLE**.

Figure 1. Logic Diagrams

Figure 2. Typical Frequency Synthesizer Application

Figure 2b Generic block diagram showing prescaler connection to PLL Device

Figure 2b shows a generic block diagram of connecting a prescaler to a PLL device that supports dual modulus controls. Applicataion not AN535 describes using a two–modulus prescaler technique. By using prescaler higher frequencies can be achieved than by a single CMOS PLL device.

			Test Limits							
		Pin Under	-30	0°C	25	o°C	85	j°C]	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit	
Power Supply Drain Current	ICC1	8	-88		-80		-80		mAdc	
	ICC2	6		5.2		5.2		5.2	mAdc	
Input Current	linH1	15 11 12 13		375 375 375 375 375		250 250 250 250		250 250 250 250	μAdc	
	linH2	4 5	1.7 1.7	6.0 6.0	2.0 2.0	6.0 6.0	2.0 2.0	6.4 6.4	mAdc	
	linH3	5	0.7	3.0	1.0	3.0	1.0	3.6		
	l _{inH4}	9 10		100 100		100 100		100 100	µAdc	
Leakage Current	linL1	15 11 12 13	-10 -10 -10 -10		-10 -10 -10 -10		-10 -10 -10 -10		μAdc	
	linL2	9 10	-1.6 -1.6	34 3	-1.6 -1.6		-1.6 -1.6		mAdc	
Reference Voltage	V _{BB}	14	and	k Tr	-1.360	-1.160			Vdc	
Logic '1' Output Voltage	VOH1 (Note 1)	2 3	- 1.10 0 -1.100	-0.890 -0.890	-1.000 -1.000	-0.810 -0.810	-0.930 -0.930	-0.700 -0.700	Vdc	
	V _{OH2}	7	-2.8		-2.6		-2.4]	
Logic '0' Output Voltage	V _{OL1} (Note 1)	2 3	-1.990 -1.990	-1.675 -1.675	-1.950 -1.950	-1.650 -1.650	-1.925 -1.925	-1.615 -1.615	Vdc	
	VOL2	7		-4.26		-4.40		-4.48]	
Logic '1' Threshold Voltage	VOHA (Note 2)	2 3	-1.120 -1.120		-1.020 -1.020		-0.950 -0.950		Vdc	
Logic '0' Threshold Voltage	VOLA (Note 3)	2 3		-1.655 -1.655		-1.630 -1.630		-1.595 -1.595	Vdc	
Short Circuit Current	los	7	-65	-20	-65	-20	-65	-20	mAdc	
NOTES: 1. Test outputs of the device must be test	iOS sted by sequen	cing through t	the truth table	e. All input, p	ower supply	and	<u> -03</u> Cli	ock Input		

ELECTRICAL CHARACTERISTICS (Supply Voltage = -5.2 V, unless otherwise noted.)

DTES: 1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.
 In addition to meeting the output levels specified, the device must divide by 5 or 8 during this test. The clock

Clock Input VIHmax VILmin

and the waveform shown.In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 Ω resistor to -2.0 V. Test procedures are shown for only one gate. The other gates are tested in the same manner.

				TEST V	OLTAGE/CU	JRRENT VA	LUES		
					Volt	S			
(C)) Test Temp	erature	V _{IHmax}	V _{ILmin}	VIHAmin	VILAmax	VIH	VILH	
		–30°C	-0.890	-1.990	-1.205	-1.500	-2.8	-4.7	
		25°C	-0.810	-1.950	-1.105	-1.475	-2.8	-4.7	
		85°C	-0.700	-1.925	-1.035	-1.440	-2.8	-4.7	
		Pin	TE	ST VOLTAGE	APPLIED	TO PINS LIS	TED BELC	w	
Characteristic	Symbol	Test	V _{IHmax}	V _{ILmin}	V _{IHAmin}	V _{ILAmax}	V _{IH}	VIL	Gnd
Power Supply Drain Current	ICC1	8							1,16
	ICC2	6	4	5					6
Input Current	linH1	15 11 12 13	15 11 12 13						1,16 1,16 1,16 1,16 1,16
	linH2	4 5	5 5	4 4	A				6 6
	linH3	5	4	5	A IN				6
	linH4	9 10		小な	° C		9 10		1,16 1,16
Leakage Current	linL1	15 11 12 13		COV	n				1,16 1,16 1,16 1,16 1,16
	^l inL2	9 10						9 10	1,16 1,16
Reference Voltage	VBB	14							1,16
Logic '1' Output Voltage	VOH1 (Note 1)	2 3		11,12,13 11,12,13				9,10 9,10	1,16 1,16
	VOH2	7	5	4					6
Logic '0' Output Voltage	VOL1 (Note 1)	2 3		11,12,13 11,12,13				9,10 9,10	1,16 1,16
	V _{OL2}	7	4	5					6
Logic '1' Threshold Voltage	V _{OHA} (Note 2)	2 3			11,12,13 11,12,13				1,16 1,16
Logic '0' Threshold Voltage	V _{OLA} (Note 3)	2 3				11,12,13 11,12,13			1,16 1,16
Short Circuit Current	los	7	5	4				7	6

ELECTRICAL CHARACTERISTICS (continued) (Supply Voltage = -5.2 V, unless otherwise noted.)

NOTES: 1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.

2. In addition to meeting the output levels specified, the device must divide by 5 or 8 during this test. The clock input is the waveform shown.

Clock Input

VIHmax

V_{ILmin}

 In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

				TEST VO	OLTAGE/CU	RRENT VA	LUES		
				Volts			mA		
(Contraction of the second sec) Test Temp	erature	VIHT	VILT	VEE	١L	lol	Іон	
		–30°C	-3.2	-4.4	-5.2	-0.25	16	-0.40	
	25°C					-0.25	16	-0.40	
		85°C	-3.2	-4.4	-5.2	-0.25	16	-0.40	
		Pin Under	TE	ST VOLTAGE	APPLIED 1	O PINS LIS	TED BELC	w	
Characteristic	Symbol	Test	VIHT	VILT	VEE	١L	IOL	ЮН	Gnd
Power Supply Drain Current	I _{CC1}	8			8				1,16
	ICC2	6			8				6
Input Current	linH1	15	0.10		8				1,16
		12	9,10		8				1,16
		13	9,10		8				1,16
	linH2	4 5			8 8				6 6
	l _{inH3}	5			8				6
	linH4	9 10		える	8 8				1,16 1,16
Leakage Current	linL1	15			8,15				1,16
		11 12		°.0'	8,11 8.12				1,16 1.16
		-13			8,13				1,16
	linL2	9 10			8 8				1,16 1,16
Reference Voltage	VBB	14			8	14			1,16
Logic '1' Output Voltage	VOH1 (Note 1)	2 3			8 8				1,16 1,16
	VOH2	7			8			7	6
Logic '0' Output Voltage	VOL1 (Note 1)	2 3			8 8				1,16 1,16
	V _{OL2}	7			8		7		6
Logic '1' Threshold Voltage	VOHA (Note 2)	2 3	9,10 9,10		8 8				1,16 1,16
Logic '0' Threshold Voltage	V _{OLA} (Note 2)	2 3		9,10 9,10	8 8				1,16 1,16
Short Circuit Current	IOS	7			8				6

ELECTRICAL CHARACTERISTICS (continued) (Supply Voltage = -5.2 V, unless otherwise noted.)

NOTES: 1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown. 2. In addition to meeting the output levels specified, the device must divide by 5 or 8 during this test. The clock

input is the waveform shown.

Clock Input

VIHmax

VILmin

3. In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

					Test L	.imits			
		Pin Under	-30)°C	25	°C	85	°C	
Characteristic	Symbol	Test	Min	Max	Min	Max	Min	Max	Unit
Power Supply Drain Current	I _{CC1}	8	-88		-80		-80		mAdc
	ICC2	6		5.2		5.2		5.2	mAdc
Input Current	l _{inH1}	15 11 12 13		375 375 375 375 375		250 250 250 250		250 250 250 250	μAdc
	linH2	4 5	1.7 1.7	6.0 6.0	2.0 2.0	6.0 6.0	2.0 2.0	6.4 6.4	mAdc
	linH3	5	0.7	3.0	1.0	3.0	1.0	3.6	
	linH4	9 10			100 100	100 100		100 100	μAdc
Leakage Current	linL1	15 11 12 13	-10 -10 -10 -10		-10 -10 -10 -10		-10 -10 -10 -10		μAdc
	linL2	9 10	-1.6 -1.6	a 4	-1.6 -1.6		-1.6 -1.6		mAdc
Reference Voltage	V _{BB}	14		k 12-	3.67	3.87			Vdc
Logic '1' Output Voltage	V _{OH1} (Note 1)	2 3	3.900 3.900	4.110 4.110	4.000 4.000	4.190 4.190	4.070 4.070	4.300 4.300	Vdc
	V _{OH2}	7	2.4		2.6		2.8		
Logic '0' Output Voltage	VOL1 (Note 1)	2 3	3.070 3.070	3.385 3.385	3.110 3.110	3.410 3.410	3.135 3.135	3.445 3.445	Vdc
	VOL2	7		0.94		0.80		0.72	
Logic '1' Threshold Voltage	VOHA (Note 2)	2 3	3.880 3.880		3.980 3.980		4.050 4.050		Vdc
Logic '0' Threshold Voltage	V _{OLA} (Note 3)	2 3		3.405 3.405		3.430 3.430		3.465 3.465	Vdc
Short Circuit Current	los	7	-65	-20	-65	-20	-65	-20	mAdc
NOTES: 1. Test outputs of the device must be tes	ted by sequen	cing through t	he truth table	e. All input, p	ower supply	and	Cl	ock Input	

ELECTRICAL CHARACTERISTICS (Supply Voltage = 5.0 V, unless otherwise noted.)

The storight of the device must be rester by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.
 In addition to meeting the output levels specified, the device must divide by 5 or 8 during this test. The clock input is the waveform shown.
 In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

VIHmax VILmin

input is the waveform shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50 Ω resistor to -2.0 V. Test procedures are shown for only one gate. The other gates are tested in the same manner.

				TEST V	OLTAGE/CU	JRRENT VA	LUES		
					Volt	S			
(C))) Test Temp	erature	V _{IHmax}	V _{ILmin}	VIHAmin	V _{ILAmax}	VIH	VILH	
		−30°C	4.110	3.070	3.795	3.500	2.4	0.5	
		25°C	4.190	3.110	3.895	3.525	2.4	0.5	
		85°C	4.300	3.135	3.965	3.560	2.4	0.5	
		Pin	TE	ST VOLTAGE		TO PINS LIS	TED BELO	w	
Characteristic	Symbol	Test	VIHmax	VILmin	VIHAmin	VILAmax	VIH	VIL	(VEE) Gnd
Power Supply Drain Current	ICC1	8							8
	ICC2	6	4	5					8
Input Current	linH1	15 11 12 13	15 11 12 13						8 8 8 8
	linH2	4 5	5 5	4 4	0				8 8
	l _{inH3}	5	4	5	A E				8
	linH4	9 10		れた	2		9 10		8 8
Leakage Current	linL1	15 11 12 13		COV	n				8,15 8,11 8,12 8,13
	linL2	9 10						9 10	8 8
Reference Voltage	VBB	14							8
Logic '1' Output Voltage	VOH1 (Note 1)	2 3		11,12,13 11,12,13				9,10 9,10	8 8
	VOH2	7	5	4					8
Logic '0' Output Voltage	VOL1 (Note 1)	2 3		11,12,13 11,12,13				9,10 9,10	8 8
	V _{OL2}	7	4	5					8
Logic '1' Threshold Voltage	VOHA (Note 2)	2 3			11,12,13 11,12,13				8 8
Logic '0' Threshold Voltage	V _{OLA} (Note 3)	2 3				11,12,13 11,12,13			8 8
Short Circuit Current	los	7	5	4				7	8

ELECTRICAL CHARACTERISTICS (continued) (Supply Voltage = 5.0 V, unless otherwise noted.)

NOTES: 1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.
2. In addition to meeting the output levels specified, the device must divide by 5 or 8 during this test. The clock input is the waveform shown.

Clock Input

VIHmax V_{ILmin}

3. In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

			TEST VOLTAGE/CURRENT VALUES									
				Volts			mA					
(a)) Test Temp	perature	VIHT	VILT	v _{cc}	١L	IOL	Іон				
		–30°C	2.0	0.8	5.0	-0.25	16	-0.40				
		25°C	2.0	0.8	5.0	-0.25	16	-0.40				
		85°C	2.0	0.8	5.0	-0.25	16	-0.40	1			
		Pin	TE	ST VOLTAGE		O PINS LIS		w				
Characteristic	Symbol	Under Test	VIHT	VILT	V _{CC}	١L	IOL	ЮН	(V _{EE}) Gnd			
Power Supply Drain Current	ICC1	8			1,16				8			
	ICC2	6			6				8			
Input Current	linH1	15 11 12 13	9,10 9,10 9,10		1,16 1,16 1,16 1,16				8 8 8 8			
	linH2	4 5			6 6				8 8			
	linH3	5		. 4	6				8			
	linH4	9 10		为苍	1,16 1,16				8 8			
Leakage Current	linL1	15 11 12 13		COL	1,16 1,16 1,16 1,16 1,16				8,15 8,11 8,12 8,13			
	linL2	9 10			1,16 1,16				8 8			
Reference Voltage	VBB	14			1,16	14			8			
Logic '1' Output Voltage	VOH1 (Note 1)	2 3			1,16 1,16				8 8			
	VOH2	7			6			7	8			
Logic '0' Output Voltage	VOL1 (Note 1)	2 3			1,16 1,16				8 8			
	VOL2	7			6		7		8			
Logic '1' Threshold Voltage	V _{OHA} (Note 2)	2 3	9,10 9,10		1,16 1,16				8 8			
Logic '0' Threshold Voltage	VOLA (Note 3)	2 3		9,10 9,10	1,16 1,16				8 8			
Short Circuit Current	los	7			6				8			

ELECTRICAL CHARACTERISTICS (continued) (Supply Voltage = 5.0 V, unless otherwise noted.)

NOTES: 1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.
2. In addition to meeting the output levels specified, the device must divide by 5 or 8 during this test. The clock input is the waveform shown.

 In addition to meeting the output levels specified, the device must divide by 6 or 9 during this test. The clock input is the waveform shown.

SWITCHING CHARACTERISTICS

		Dim			ML	12509, I	ML1251	1, ML12	513			TEST VOLTAGES/WAVEFORMS APPLIED TO					D TO PIN	S LISTED E	BELOW:	
		Under		-30°C			25°C			85°C			Pulse	Pulse	Pulse	VIHmin	VILmin	VF	VEE	Vcc
Characteristic	Symbol	Test	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	Gen.1	Gen.2	Gen.3	†	†	–3.0 V	–3.0 V	+2.0
Propagation Delay (See Figures 3 and 5)	t _{15+ 2+} t _{15+ 2-} t _{5+ 7+} t _{5- 7-}	2 2 7 7	 		8.1 7.5 8.4 6.5			8.1 7.5 8.1 6.5		1111	8.9 82 8.9 7.1	ns 	15 15 A A	 		 	11,12,13 11,12,13 — —	9,10 9,10 — —	8 8 8 8	1,6,16 1,6,16 1,6,16 1,6,16
Setup Time (See Figures 4 and 5)	t _{setup1} t _{setup2}	11 9	5.0 5.0	-		5.0 5.0	=	_	5.0 5.0			ns ns	15 15	* 	*	-	* 11,12,13	9,10 *	8 8	1,6,16 1,6,16
Release Time (See Figures 4 and 5)	t _{rel1} t _{rel2}	11 9	5.0 5.0	-		5.0 5.0	-	-	5.0 5.0			ns ns	15 15	* _		-	* 11,12,13	9.10 *	8 8	1,6,16 1,6,16
Toggle Frequency (See Figure 6) ML12509 : 5/6 ML12511 : 8/9	f _{max}	2	440 500	_	_	480 550	_	_	440 500	_	_	MHz			_	11 11			8 8	16 16

*Test inputs sequentially, with Pulse Generator 2 or 3 as indicated connected to input under test, and the voltage indicated applied to the other input(s) of the same type (i.e., MECL or MTTL).

	–30°C	25°C	85°C	
†V _{IHmin}	1.03	1.115	1.20	Vdc
†V _{ILmin}	0.175	0.200	0.235	Vdc

Figure 3. AC Voltage Waveforms

Figure 4. Setup and Release Time Waveforms

Figure 5. AC Test Circuit

Figure 6. Maximum Frequency Test Circuit

Figure 7. State Diagram

DIVIDE BY 5/6 (ML12009/ML12509)

APPLICATIONS INFORMATION

The primary application of these devices is as a high–speed variable modulus prescaler in the divide by N section of a phase–locked loop synthesizer used as the local oscillator of two–way radios.

Proper VHF termination techniques should be followed when the clock is separated from the prescaler by any appreciable distance. In their basic form, these devices will divide by 5/6 or 8/9. Division by 5, or 8 occurs when any one or all of the five gate inputs E1 through E5 are high. Division by 6, or 9 occurs when all inputs E1 through E5 are low. (Unconnected MTTL inputs are normally high, unconnected MECL inputs are normally low). With the addition of extra parts, many different division configurations may be obtained.

Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. "Typical" parameters which may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.