14-Bit Binary Counter and Oscillator

The MC14060B is a 14–stage binary ripple counter with an on–chip oscillator buffer. The oscillator configuration allows design of either RC or crystal oscillator circuits. Also included on the chip is a reset function which places all outputs into the zero state and disables the oscillator. A negative transition on Clock will advance the counter to the next state. Schmitt trigger action on the input line permits very slow input rise and fall times. Applications include time delay circuits, counter controls, and frequency dividing circuits.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in}$ or $V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

- Fully Static Operation
- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 V to 18 V
- Capable of Driving Two Low–power TTL Loads or One Low–power Schottky TTL Load Over the Rated Temperature Range
- Buffered Outputs Available from Stages 4 Through 10 and 12 Through 14
- Common Reset Line
- Pin-for-Pin Replacement for CD4060B
- Pb–Free Packages are Available*

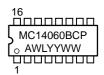
$\textbf{MAXIMUM RATINGS} \ (Voltages \ Referenced \ to \ V_{SS})$

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} +0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P_D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
TL	Lead Temperature (8 Second Soldering)	260	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

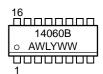
 Temperature Derating: Plastic "P and D/DW" Packages: -7.0 mW/°C from 65°C To 125°C.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.



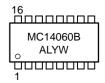
http://onsemi.com

MARKING DIAGRAMS



PDIP-16 P SUFFIX CASE 648

SOIC-16 D SUFFIX CASE 751B



TSSOP-16 DT SUFFIX CASE 948F

SOEIAJ-16 F SUFFIX CASE 966

A = Assembly Location

WL, L = Wafer Lot YY, Y = Year

WW, W = Work Week

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

Q12 [1 •	16] V _{DD}
Q13 [2	15] Q10
Q14 [3	14] Q8
Q6 [4	13] Q9
Q5 [5	12	RESET
Q7 [6	11	СГОСК
Q4 [7	10] OUT 1
V _{SS} [8	9	OUT 2

Figure 1. Pin Assignment

Table 1. Truth Table

Clock	Reset	Output State
ェイト	L L H	No Change Advance to Next State All Outputs are Low

X = Don't Care

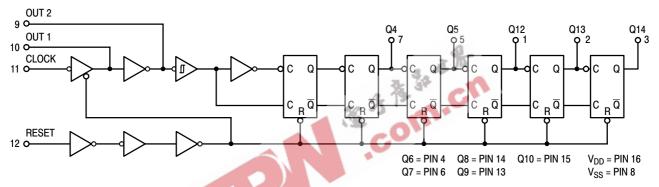


Figure 2. Logic Diagram

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

			- 5	5°C		25°C		12	5°C	
Symbol	Characteristic	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
V _{OL}	Output Voltage "0" Level $V_{in} = V_{DD}$ or 0	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	V
V _{OH}	$V_{in} = 0 \text{ or } V_{DD}$ "1" Level	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	V
V _{IL}	Input Voltage "0" Level $(V_O = 4.5 \text{ or } 0.5 \text{ V})$ $(V_O = 9.0 \text{ or } 1.0 \text{ V})$ $(V_O = 13.5 \text{ or } 1.5 \text{ V})$	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	V
V _{IH}	$(V_O = 0.5 \text{ or } 4.5 \text{ V})$ "1" Level $(V_O = 1.0 \text{ or } 9.0 \text{ V})$ $(V_O = 1.5 \text{ or } 13.5 \text{ V})$	5.0 10 15	3.5 7.0 11.0	- - -	3.5 7.0 11.0	2.75 5.50 8.25	- - -	3.5 7.0 11.0	- - -	V
V _{IL}	Input Voltage "0" Level $(V_O = 4.5 \text{ Vdc})$ (For Input 11 $(V_O = 9.0 \text{ Vdc})$ and Output 10) $(V_O = 13.5 \text{ Vdc})$	5.0 10 15	- - -	1.0 2.0 2.5	-	2.25 4.50 6.75	1.0 2.0 2.5	- - -	1.0 2.0 2.5	Vdc
V _{IH}	$(V_O = 0.5 \text{ Vdc})$ "1" Level $(V_O = 1.0 \text{ Vdc})$ $(V_O = 1.5 \text{ Vdc})$	5.0 10 15	4.0 8.0 12.5	- 9	4.0 8.0 12.5	2.75 5.50 8.25	- -	4.0 8.0 12.5	- - -	Vdc
I _{OH}	Output Drive Current (V _{OH} = 2.5 V) (Except Source (V _{OH} = 4.6 V) Pins 9 and 10) (V _{OH} = 9.5 V) (V _{OH} = 13.5 V)	5.0 5.0 10 15	-3.0 -0.64 -1.6 - 4.2		-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8	- - -	- 1.7 - 0.36 - 0.9 - 2.4	- - -	mA
I _{OL}	$(V_{OL} = 0.4 \text{ V})$ Sink $(V_{OL} = 0.5 \text{ V})$ $(V_{OL} = 1.5 \text{ V})$	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mA
I _{in}	Input Current	15	_	± 0.1	-	±0.00001	± 0.1	-	± 1.0	μΑ
C _{in}	Input Capacitance (V _{in} = 0)	_	-	-	-	5.0	7.5	-	-	pF
I _{DD}	Quiescent Current (Per Package)	5.0 10 15		5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μΑ
I _T	Total Supply Current (Notes 3, 4) (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)	5.0 10 15			$I_T = (0$.25 μΑ/kHz) .54 μΑ/kHz) .85 μΑ/kHz)	f + I _{DD}			μΑ

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.
 To calculate total supply current at loads other than 50 pF: I_T(C_L) = I_T(50 pF) + (C_L – 50) Vfk where: I_T is in μA (per package), C_L in pF, V = (V_{DD} – V_{SS}) in volts, f in kHz is input frequency, and k = 0.002.

SWITCHING CHARACTERISTICS ($C_L = 50 \text{ pF}, T_A = 25^{\circ}\text{C}$)

Symbol	Characteristic	V _{DD} Vdc	Min	Typ (Note 5)	Max	Unit
t _{TLH}	Output Rise Time (Counter Outputs)	5.0 10 15		40 25 20	200 100 80	ns
t _{THL}	Output Fall Time (Counter Outputs)	5.0 10 15	- - -	50 30 20	200 100 80	ns
t _{PLH} t _{PHL}	Propagation Delay Time Clock to Q4	5.0 10 15	- - -	415 175 125	740 300 200	ns
	Clock to Q14	5.0 10 15		1.5 0.7 0.4	2.7 1.3 1.0	μs
t _{wH}	Clock Pulse Width	5.0 10 15	100 40 30	65 30 20	- - -	ns
$f_{oldsymbol{\varphi}}$	Clock Pulse Frequency	5.0 10 15	4	5 14 17	3.5 8 12	MHz
t _{TLH} t _{THL}	Clock Rise and Fall Time	5.0 10 15	CN	No Limit		ns
t _w	Reset Pulse Width	5.0 10 15	120 60 40	40 15 10	- - -	ns
t _{PHL}	Propagation Delay Time Reset to On	5.0 10 15	- - -	170 80 60	350 160 100	ns

^{5.} Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

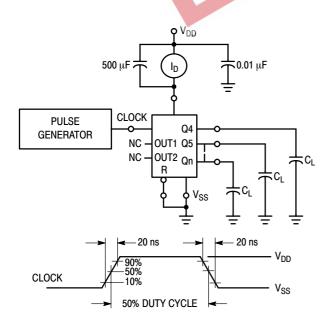


Figure 1. Power Dissipation Test Circuit and Waveform

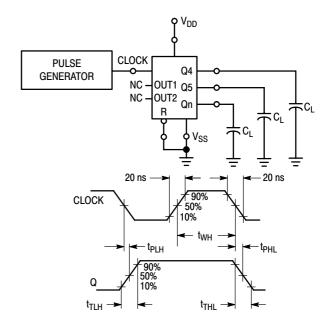
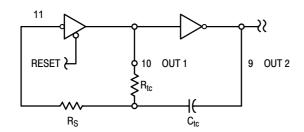
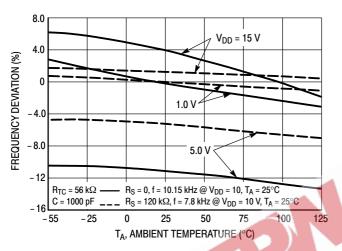



Figure 2. Switching Time Test Circuit and Waveforms



$$t \approx \frac{1}{2.3 \, R_{tc} C_{tc}}$$

if 1 kHz \leq f \leq 100 kHz
and $2 R_{tc} < R_S < 10 R_{tc}$
(f in Hz, R in ohms, C in farads)

The formula may vary for other frequencies. Recommended maximum value for the resistors in 1 $M\Omega.$

Figure 3. Oscillator Circuit Using RC Configuration

TYPICAL RC OSCILLATOR CHARACTERISTICS

100 $V_{DD} = 10 \text{ V}$ 50 **OSCILLATOR FREQUENCY (kHz)** f AS A FUNCTION 20 OF R_{TC} 10 (C = 1000 pF) $(R_S \approx 2R_{TC})$ 5 2 OF C $(R_{TC} = 56 \text{ k}\Omega)$ $(R_S = 120 \text{ k})$ 0.5 10 k 1.0 M R_{TC}, RESISTANCE (OHMS) 0.0001 0.001 0.01 0.1 C, CAPACITANCE (µF)

Figure 4. RC Oscillator Stability

Figure 5. RC Oscillator Frequency as a Function of R_{TC} and C

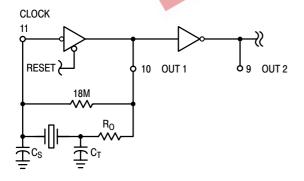


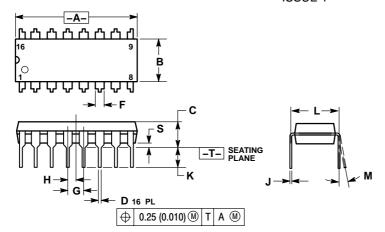
Figure 6. Typical Crystal Oscillator Circuit

Table 2. Typical Data for Crystal Oscillator Circuit

Characteristic	500 kHz Circuit	32 kHz Circuit	Unit
Crystal Characteristics Resonant Frequency Equivalent Resistance, R _S	500 1.0	32 6.2	kHz kΩ
External Resistor/Capacitor Values RO CT CS	47 82 20	750 82 20	kΩ pF pF
Frequency Stability Frequency Changes as a Function of V _{DD} (T _A = 25°C) V _{DD} Change from 5.0 V to 10 V V _{DD} Change from 10 V to 15 V Frequency Change as a Function of Temperature (V _{DD} = 10 V)	+6.0 +2.0	+2.0 +2.0	ppm
T _A Change from - 55°C to +25°C Complete Oscillator (Note 6) T _A Change from + 25°C to +125°C Complete Oscillator (Note 6)	+100 -160	+120 -560	ppm

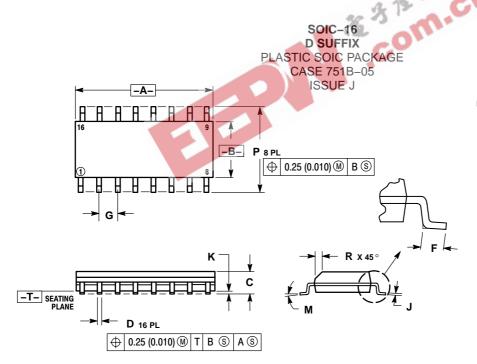
^{6.} Complete oscillator includes crystal, capacitors, and resistors.

ORDERING INFORMATION


Device	Package	Shipping [†]
MC14060BCP	PDIP-16	500 Units / Rail
MC14060BCPG	PDIP-16 (Pb-Free)	500 Units / Rail
MC14060BD	SOIC-16	48 Units / Rail
MC14060BDR2	SOIC-16	2500 / Tape & Reel
MC14060BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
MC14060BFEL	SOEIAJ-16 (Pb-Free)	2000 / Tape & Reel
MC14060BDTR2	TSSOP-16 (Pb-Free)	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS


PDIP-16 **P SUFFIX** CASE 648-08 **ISSUE T**

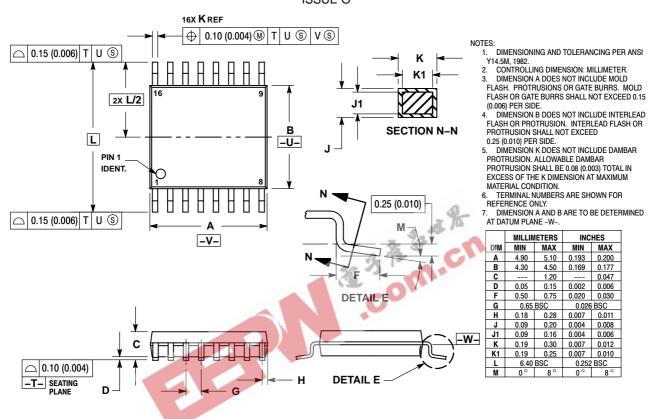
- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE

- MOLD FLASH.
 ROUNDED CORNERS OPTIONAL.

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.740	0.770	18.80	19.55
В	0.250	0.270	6.35	6.85
С	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100	BSC	2.54	BSC
Н	0.050	BSC	1.27	BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
mМ	0°	10°	0°	10 °
S	0.020	0.040	0.51	1.01

- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- Y14-5M, 1982.

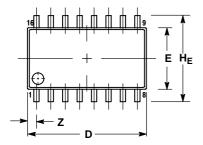
 CONTROLLING DIMENSION: MILLIMETER.

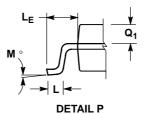

 JUMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
 MAXIMUM MATERIAL CONDITION.

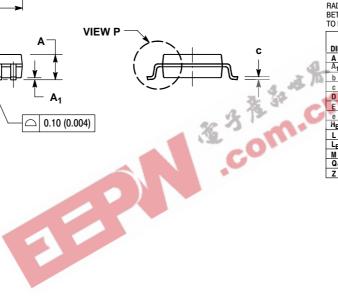
	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050	BSC
J	0.19	0.25	0.008	0.009
K	0.10	0.25	0.004	0.009
M	0°	7°	0°	7°
P	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

PACKAGE DIMENSIONS


TSSOP-16 DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948F-01 ISSUE O



PACKAGE DIMENSIONS


SOEIAJ-16 **F SUFFIX** PLASTIC EIAJ SOIC PACKAGE

CASE 966-01 **ISSUE O**

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS DAND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15
- (0.006) PER SIDE.

 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) DAMIDAN PROTRUSION SHALL BE 0.08 (0.003)
 TOTAL IN EXCESS OF THE LEAD WIDTH
 DIMENSION AT MAXIMUM MATERIAL CONDITION.
 DAMBAR CANNOT BE LOCATED ON THE LOWER
 RADIUS OR THE FOOT. MINIMUM SPACE
 BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018).

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α		2.05		0.081
A_1	0.05	0.20	0.002	0.008
b	0.35	0.50	0.014	0.020
С	0.18	0.27	0.007	0.011
D	9.90	10.50	0.390	0.413
E	5.10	5.45	0.201	0.215
е	1.27	1.27 BSC 0.050 BS0		BSC
HE	7.40	8.20	0.291	0.323
L	0.50	0.85	0.020	0.033
LE	1.10	1.50	0.043	0.059
M	0 °	10°	0 °	10°
Q_1	0.70	0.90	0.028	0.035
Z		0.78		0.031

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 **Phone**: 81–3–5773–3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.