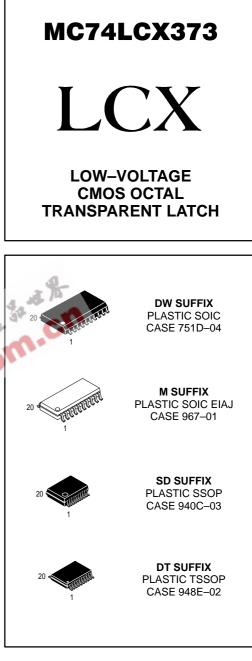
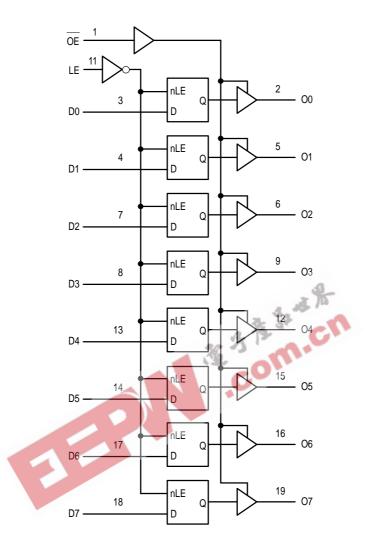

Low-Voltage CMOS Octal Transparent Latch With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)


The MC74LCX373 is a high performance, non-inverting octal transparent latch operating from a 2.7 to 3.6V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A VI specification of 5.5V allows MC74LCX373 inputs to be safely driven from 5V devices.

The MC74LCX373 contains 8 D-type latches with 3-state outputs. When the Latch Enable (LE) input is HIGH, data on the Dn inputs enters the latches. In this condition, the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state standard outputs are controlled by the Output Enable (QE) input. When OE is LOW, the standard outputs are enabled. When OE is HIGH, the standard outputs are in the high impedance state, but this does not interfere with new data entering into the latches.

- Designed for 2.7 to 3.6V V_{CC} Operation
- 5V Tolerant Interface Capability With 5V TTL Logic
- Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When V_{CC} = 0V
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V


PIN NAMES

Pins	Function
OE	Output Enable Input
LE	Latch Enable Input
D0–D7	Data Inputs
00–07	3–State Latch Outputs

11/96

LOGIC DIAGRAM

	INPUTS		OUTPUTS	
OE	LE	Dn	On	OPERATING MODE
L	H H	HL	H L	Transparent (Latch Disabled); Read Latch
L	L	h I	H L	Latched (Latch Enabled) Read Latch
L	L	Х	NC	Hold; Read Latch
Н	L	Х	Z	Hold; Disabled Outputs
H H	H H	тı	Z Z	Transparent (Latch Disabled); Disabled Outputs
H H	L	h I	Z Z	Latched (Latch Enabled); Disabled Outputs

H = High Voltage Level; h = High Voltage Level One Setup Time Prior to the Latch Enable High–to–Low Transition; L = Low Voltage Level; I = Low Voltage Level One Setup Time Prior to the Latch Enable High–to–Low Transition; NC = No Change, State Prior to the Latch Enable High–to–Low Transition; X = High or Low Voltage Level or Transitions are Acceptable; Z = High Impedance State; For I_{CC} Reasons DO NOT FLOAT Inputs

Symbol	Parameter	Value	Condition	Unit
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \leq V_I \leq +7.0$		V
VO	DC Output Voltage	$-0.5 \le V_O \le +7.0$	Output in 3-State	V
		$-0.5 \le V_{O} \le V_{CC} + 0.5$	Note 1.	V
IIК	DC Input Diode Current	-50	V _I < GND	mA
ЮК	DC Output Diode Current	-50	V _O < GND	mA
		+50	V _O > V _{CC}	mA
IO	DC Output Source/Sink Current	±50		mA
ICC	DC Supply Current Per Supply Pin	±100		mA
IGND	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C

ABSOLUTE MAXIMUM RATINGS*

 * Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated conditions is not implied.
1. Output in HIGH or LOW State. IO absolute maximum rating must be observed. The state of the s

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	30 3	Min	Тур	Max	Unit
V _{CC}	Supply Voltage	Operating Retention Only	2.0 1.5	3.3 3.3	3.6 3.6	V
VI	Input Voltage		0		5.5	V
VO	Output Voltage (HIGF	l or LOW State) (3–State)	0 0		V _{CC} 5.5	V
IOH	HIGH Level Output Current, $V_{CC} = 3.0V - 3.6V$	/			-24	mA
IOL	LOW Level Output Current, V _{CC} = 3.0V - 3.6V				24	mA
ЮН	HIGH Level Output Current, $V_{CC} = 2.7V - 3.0V$	/			-12	mA
I _{OL}	LOW Level Output Current, $V_{CC} = 2.7V - 3.0V$				12	mA
T _A	Operating Free–Air Temperature		-40		+85	°C
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, V_{IN} from 0.8 $V_{CC} = 3.0V$	V to 2.0V,	0		10	ns/V

DC ELECTRICAL CHARACTERISTICS

			T _A = −40°C to +85°C		
Symbol	Characteristic	Condition	Min	Max	Unit
VIH	HIGH Level Input Voltage (Note 2.)	$2.7V \le V_{CC} \le 3.6V$	2.0		V
VIL	LOW Level Input Voltage (Note 2.)	$2.7V \le V_{CC} \le 3.6V$		0.8	V
VOH	HIGH Level Output Voltage	$2.7V \leq V_{CC} \leq 3.6V; \ I_{OH} = -100 \mu A$	V _{CC} – 0.2		V
		$V_{CC} = 2.7V; I_{OH} = -12mA$	2.2		
		$V_{CC} = 3.0V; I_{OH} = -18mA$	2.4		
		$V_{CC} = 3.0V; I_{OH} = -24mA$	2.2		
VOL	LOW Level Output Voltage	$2.7V \leq V_{CC} \leq 3.6V; \ I_{OL} = 100 \mu A$		0.2	V
		$V_{CC} = 2.7V; I_{OL} = 12mA$		0.4	
		$V_{CC} = 3.0V; I_{OL} = 16mA$		0.4	
		$V_{CC} = 3.0V; I_{OL} = 24mA$		0.55	

2. These values of V_I are used to test DC electrical characteristics only.

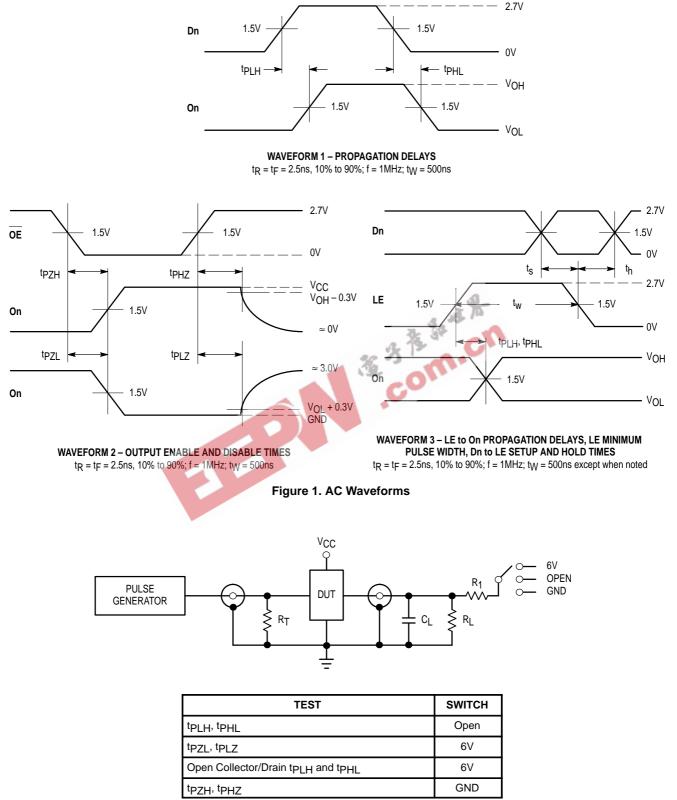
DC ELECTRICAL CHARACTERISTICS (continued)

			T _A = −40°C to +85°C		
Symbol	Characteristic	Condition	Min Max		Unit
lj	Input Leakage Current	$2.7 \text{V} \leq \text{V}_{CC} \leq 3.6 \text{V}; \ 0 \text{V} \leq \text{V}_I \leq 5.5 \text{V}$		±5.0	μΑ
I _{OZ}	3–State Output Current	$\begin{array}{c} 2.7 \leq V_{CC} \leq 3.6 \text{V}; \ 0 \text{V} \leq \text{V}_{O} \leq 5.5 \text{V}; \\ \text{V}_{I} = \text{V}_{IH} \ \text{or} \ \text{V} \ \text{IL} \end{array}$		±5.0	μA
IOFF	Power-Off Leakage Current	$V_{CC} = 0V; V_{I} \text{ or } V_{O} = 5.5V$		10	μΑ
ICC	Quiescent Supply Current	$2.7 \le V_{CC} \le 3.6V; V_I = GND \text{ or } V_{CC}$		10	μΑ
		$2.7 \leq V_{CC} \leq 3.6 \text{V}; \ 3.6 \leq \text{V}_{I} \text{ or } \text{V}_{O} \leq 5.5 \text{V}$		±10	μΑ
ΔlCC	Increase in I _{CC} per Input	$2.7 \leq V_{CC} \leq 3.6 \text{V}; \text{ V}_{IH} = \text{V}_{CC} - 0.6 \text{V}$		500	μΑ

AC CHARACTERISTICS ($t_R = t_F = 2.5n_s$; $C_L = 50p_F$; $R_L = 500\Omega$)

				Lim	its		
				T _A = −40°C	C to +85°C		
			V _{CC} = 3.0	V to 3.6V	V _{CC} =	= 2.7V	
Symbol	Parameter	Waveform	Min 🚽	Max	Min	Max	Unit
^t PLH ^t PHL	Propagation Delay D _n to O _n	1	1.5 1.5	8.0 8.0	1.5 1.5	9.0 9.0	ns
^t PLH ^t PHL	Propagation Delay LE to O _n	3	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
^t PZH ^t PZL	Output Enable Time to HIGH and LOW Level	2	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
^t PHZ ^t PLZ	Output Disable Time from HIGH and LOW Level	2	1.5 1.5	7.5 7.5	1.5 1.5	8.5 8.5	ns
t _S	Setup TIme, HIGH or LOW Dn to LE	3	2.5		2.5		ns
t _h	Hold Time, HIGH or LOW Dn to LE	3	1.5		1.5		ns
tw	LE Pulse Width, HIGH	3	3.3		3.3		ns
^t OSHL ^t OSLH	Output-to-Output Skew (Note 3.)			1.0 1.0			ns

 Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}); parameter guaranteed by design.

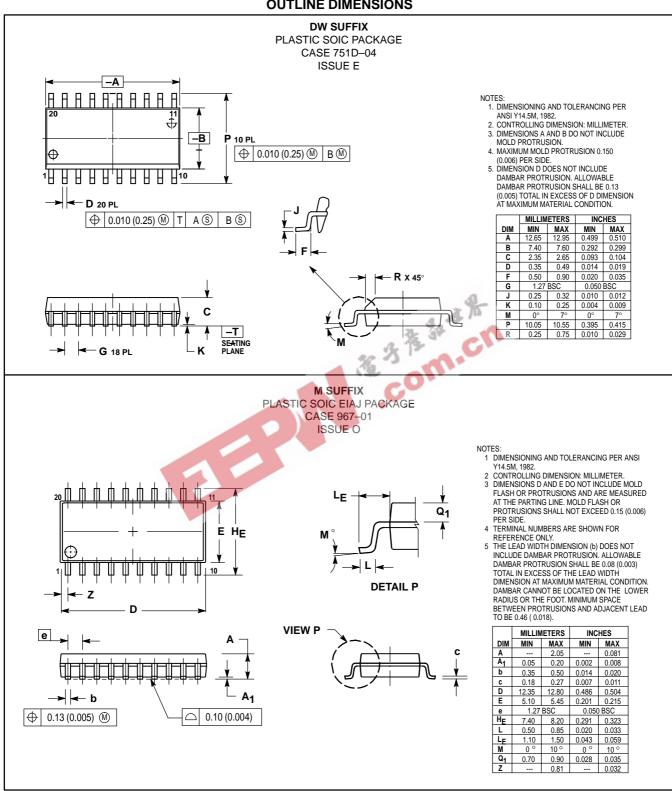

DYNAMIC SWITCHING CHARACTERISTICS

			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Unit
V _{OLP}	Dynamic LOW Peak Voltage (Note 4.)	V_{CC} = 3.3V, C_{L} = 50pF, V_{IH} = 3.3V, V_{IL} = 0V		0.8		V
VOLV	Dynamic LOW Valley Voltage (Note 4.)	$V_{\mbox{\scriptsize CC}}$ = 3.3V, $C_{\mbox{\scriptsize L}}$ = 50pF, $V_{\mbox{\scriptsize IH}}$ = 3.3V, $V_{\mbox{\scriptsize IL}}$ = 0V		0.8		V

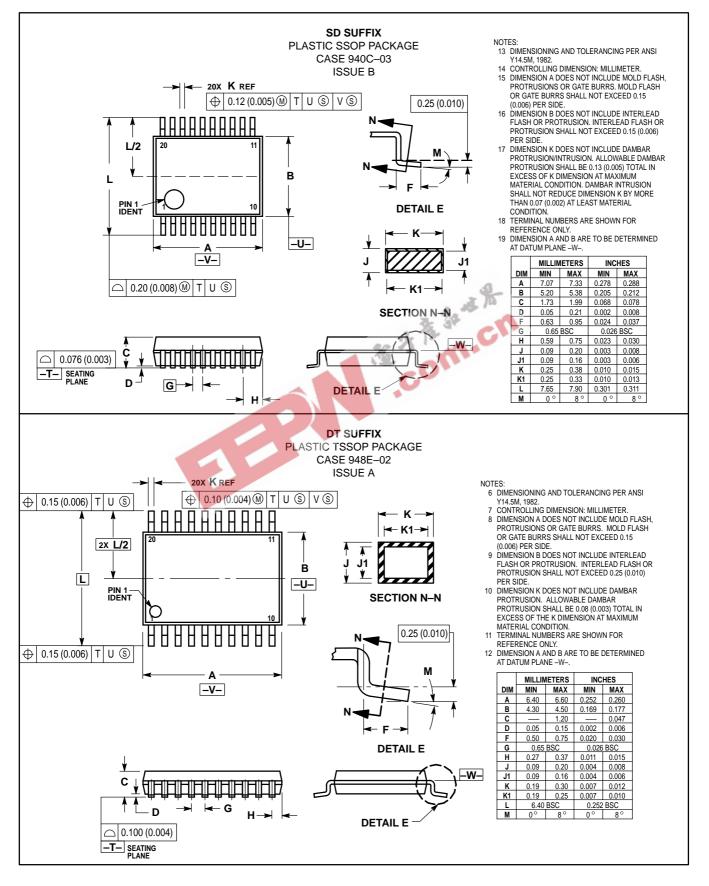
Number of outputs defined as "n". Measured with "n–1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition Typica		
C _{IN}	Input Capacitance	V_{CC} = 3.3V, V_{I} = 0V or V_{CC}	7	pF
COUT	Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10MHz, V _{CC} = 3.3V, V _I = 0V or V _{CC}	25	pF



 $C_L = 50 pF$ or equivalent (Includes jig and probe capacitance)


 $R_{L} = R_{1} = 500\Omega$ or equivalent

 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω)

Figure 2. Test Circuit

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and **(Motorola**, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–800–441–2447

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design–NET.com

0

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

