Analog Multiplexer/ Demultiplexer ## **High-Performance Silicon-Gate CMOS** The MC74LVXT4051 utilizes silicon-gate CMOS technology to achieve fast propagation delays, low ON resistances, and low leakage currents. This analog multiplexer/demultiplexer controls analog voltages that may vary across the complete power supply range (from V_{CC} to V_{EE}). The LVXT4051 is similar in pinout to the LVX8051, the HC4051A, and the metal-gate MC14051B. The Channel-Select inputs determine which one of the Analog Inputs/Outputs is to be connected, by means of an analog switch, to the Common Output/Input. When the Enable pin is HIGH, all analog switches are turned off. The Channel–Select and Enable inputs are compatible with standard TTL levels. These inputs are over-voltage tolerant (OVT) for level translation from 6.0 V down to 3.0 V. This device has been designed so the ON resistance (R_{ON}) is more linear over input voltage than the RON of metal-gate CMOS analog switches and High-Speed CMOS analog switches. - Select Pins Compatible with TTL Levels - Fast Switching and Propagation Speeds - Low Crosstalk Between Switches - Analog Power Supply Range $(V_{CC} V_{EE}) = -3.0 \text{ V to } +3.0 \text{ V}$ - Digital (Control) Power Supply Range (V_{CC} GND) = 2.5 to 6.0 V - Improved Linearity and Lower ON Resistance Than Metal-Gate, HSL, or VHC Counterparts - Low Noise - Designed to Operate on a Single Supply with $V_{EE} = GND$, or Using Split Supplies up to \pm 3.0 V - Break-Before-Make Circuitry #### ON Semiconductor™ http://onsemi.com #### MARKING DIAGRAMS SO-16 **D SUFFIX CASE 751B** TSSOP-16 DT SUFFIX CASE 948F = Assembly Location L, WL = Wafer Lot Y, YY = Year W, WW = Work Week #### ORDERING INFORMATION | Device | Package | Shipping | |------------------|------------|-----------------| | MC74LVXT4051D | SO-16 | 48 Units/Rail | | MC74LVXT4051DR2 | SO-16 | 2500 Units/Reel | | MC74LVXT4051DT | TSSOP-16 | 96 Units/Rail | | MC74LVXT4051DTR2 | TSSOP-16 | 2500 Units/Reel | | MC74LVXT4051M | SO EIAJ-16 | 48 Units/Rail | | MC74LVXT4051MEL | SO EIAJ-16 | 2000 Units/Reel | | | | | # V_{CC} X2 X1 X0 X3 A B C 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 X4 X6 X X7 X5 Enable V_{EE} GND Figure 1. Pin Connection and Marking Diagram (Top View) #### **FUNCTION TABLE** | Cont | rol Inp | | | | |--------|---------|--------|---|-------------| | | | Select | t | | | Enable | C B A | | | ON Channels | | L | | | L | X0 | | L | L | L | Н | X1 | | L | L | Н | L | X2 | | L | L | Н | Н | X3 | | L | Н | L | L | X4 | | L | Н | L | Н | X5 | | L | Н | Н | L | X6 | | L | н н н | | Н | X7 | | Н | Х | Χ | Χ | NONE | X = Don't Care Figure 2. Logic Diagram #### MAXIMUM RATINGS (Note 1) | Symbol | | Parameter | Value | Unit | |-----------------------|------------------------------------|--|---|------| | V _{EE} | Negative DC Supply Voltage | (Referenced to GND) | -7.0 to +0.5 | V | | V _{CC} | Positive DC Supply Voltage | (Referenced to GND) (Referenced to $V_{\rm EE}$) | - 0.5 to +7.0
- 0.5 to +7.0 | V | | V _{IS} | Analog Input Voltage | | $V_{\text{EE}} = 0.5 \text{ to } V_{\text{CC}} + 0.5$ | V | | V _{IN} | Digital Input Voltage | (Referenced to GND) | - 0.5 to 7.0 | V | | 1 | DC Current, Into or Out of Any Pin | | ±20 | mA | | T _{STG} | Storage Temperature Range | | - 65 to +150 | °C | | TL | Lead Temperature, 1 mm from Cas | se for 10 Seconds | 260 | °C | | TJ | Junction Temperature under Bias | | + 150 | °C | | θ_{JA} | Thermal Resistance | SOIC
TSSOP | 143
164 | °C/W | | P _D | Power Dissipation in Still Air, | SOIC
TSSOP | 500
450 | mW | | MSL | Moisture Sensitivity | | Level 1 | | | F _R | Flammability Rating | Oxygen Index: 30% – 35% | UL-94-VO (0.125 in) | | | V _{ESD} | ESD Withstand Voltage | Human Body Model (Note 2)
Machine Model (Note 3)
Charged Device Model (Note 4) | >2000
>200
>1000 | V | | I _{LATCH-UP} | Latch-Up Performance | Above V _{CC} and Below GND at 125°C (Note 5) | ±300 | mA | Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Extended exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum-rated conditions is not implied. - Tested to EIA/JESD22–A114–A. - 3. Tested to EIA/JESD22-A115-A. - 4. Tested to JESD22-C101-A. - 5. Tested to EIA/JESD78. #### RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | | Min | Max | Unit | |---------------------------------|---|--|-----------------|-----------------|------| | V _{EE} | Negative DC Supply Voltage | (Referenced to GND) | -6.0 | GND | V | | V _{CC} | Positive DC Supply Voltage | (Referenced to GND)
(Referenced to V _{EE}) | 2.5
2.5 | 6.0
6.0 | V | | V _{IS} | Analog Input Voltage | | V _{EE} | V _{CC} | V | | V _{IN} | Digital Input Voltage | (Note 6) (Referenced to GND) | 0 | 6.0 | V | | T _A | Operating Temperature Range, All Package Types | | - 55 | 125 | °C | | t _r , t _f | Input Rise/Fall Time
(Channel Select or Enable Inputs) | $V_{CC} = 3.0 \text{ V} \pm 0.3 \text{ V}$
$V_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$ | 0
0 | 100
20 | ns/V | ^{6.} Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level. ## DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES | Junction
Temperature °C | Time, Hours | Time, Years | |----------------------------|-------------|-------------| | 80 | 1,032,200 | 117.8 | | 90 | 419,300 | 47.9 | | 100 | 178,700 | 20.4 | | 110 | 79,600 | 9.4 | | 120 | 37,000 | 4.2 | | 130 | 17,800 | 2.0 | | 140 | 8,900 | 1.0 | Figure 3. Failure Rate vs. Time Junction Temperature ### DC CHARACTERISTICS – Digital Section (Voltages Referenced to GND) | | | | V _{CC} | Guara | nteed Lin | nit | | |-----------------|--|---|-------------------|-------------------|-------------------|-------------------|------| | Symbol | Parameter | Condition | V | −55 to 25°C | ≤85°C | ≤125°C | Unit | | V _{IH} | Minimum High–Level Input Voltage,
Channel–Select or Enable Inputs | | 3.0
4.5
5.5 | 2.0
2.0
2.0 | 2.0
2.0
2.0 | 2.0
2.0
2.0 | V | | V _{IL} | Maximum Low–Level Input Voltage,
Channel–Select or Enable Inputs | | 3.0
4.5
5.5 | 0.5
0.8
0.8 | 0.5
0.8
0.8 | 0.5
0.8
0.8 | V | | I _{IN} | Maximum Input Leakage Current,
Channel–Select or Enable Inputs | V _{IN} = 6.0 or GND | 0 V to 6.0 V | ± 0.1 | ±1.0 | ±1.0 | μΑ | | Icc | Maximum Quiescent Supply
Current (per Package) | Channel Select, Enable and $V_{IS} = V_{CC}$ or GND | 6.0 | 4.0 | 40 | 80 | μА | #### DC ELECTRICAL CHARACTERISTICS - Analog Section | | | V _C . Test Conditions | | VEE | Guara | nteed Lin | nit | | |------------------|---|--|-------------------|----------------|----------------|-----------------|-----------------|------| | Symbol | Parameter | | | V | −55 to 25°C | ≤85°C | ≤125°C | Unit | | R _{ON} | Maximum "ON" Resistance | $V_{IN} = V_{IL} \text{ or } V_{IH}$
$V_{IS} = \frac{1}{2} (V_{CC} - V_{EE})$
$ I_{S} = 2.0 \text{ mA}$
(Figure 4) | 3.0
4.5
3.0 | 0
0
-3.0 | 86
37
26 | 108
46
33 | 120
55
37 | Ω | | ΔR _{ON} | Maximum Difference in "ON"
Resistance Between Any
Two Channels in the Same
Package | $V_{IN} = V_{IL} \text{ or } V_{IH}$
$V_{IS} = \frac{1}{2} (V_{CC} - V_{EE})$
$ I_S = 2.0 \text{ mA}$ | 3.0
4.5
3.0 | 0
0
-3.0 | 15
13
10 | 20
18
15 | 20
18
15 | Ω | | l _{off} | Maximum Off–Channel
Leakage Current, Any One
Channel | $V_{in} = V_{IL} \text{ or } V_{IH};$
$V_{IO} = V_{CC} \text{ or GND};$
Switch Off (Figure 3) | 5.5
+3.0 | 0
-3.0 | 0.1
0.1 | 0.5
0.5 | 1.0
1.0 | μΑ | | | Maximum Off–Channel
Leakage Current,
Common Channel | $V_{in} = V_{IL} \text{ or } V_{IH};$
$V_{IO} = V_{CC} \text{ or GND};$
Switch Off (Figure 4) | 5.5
+3.0 | 0
-3.0 | 0.2
0.2 | 2.0
2.0 | 4.0
4.0 | | | I _{on} | Maximum On–Channel
Leakage Current,
Channel–to–Channel | $V_{in} = V_{IL}$ or V_{IH} ;
Switch–to–Switch =
V_{CC} or GND; (Figure 5) | 5.5
+3.0 | 0
-3.0 | 0.2
0.2 | 2.0
2.0 | 4.0
4.0 | μΑ | #### AC CHARACTERISTICS (Input $t_f = t_f = 3 \text{ ns}$) | | | | | | | Guarant | eed Limit | _ | | |------------------|---------------------------|--|-----------------|-----------------|-------------|---------|------------------------|--------|------| | | | | v _{cc} | V _{EE} | - 55 | to 25°C | | | | | Symbol | Parameter | Test Conditions | ٧ | V
V | Min | Тур* | ≤ 85 ° C | ≤125°C | Unit | | t _{BBM} | Minimum Break-Before-Make | $V_{IN} = V_{IL}$ or V_{IH} | 3.0 | 0.0 | 1.0 | 6.5 | _ | _ | ns | | | Time | $V_{IS} = V_{CC}$ | 4.5 | 0.0 | 1.0 | 5.0 | - | _ | | | | | R_L = 300 Ω, C_L = 35 pF (Figures 12 and 13) | 3.0 | -3.0 | 1.0 | 3.5 | - | _ | | ^{*}Typical Characteristics are at 25°C. ### AC CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_r = t_f = 3 \text{ ns}$) | | | | | | | Gua | ranteed L | imit | | | | |--------------------|-------------------------------|---------------------------------|----------------------|-----|-------------|-----|-----------|------|-----|------|------| | | | V _{CC} V _{EE} | | _ | - 55 to 25° | C | ≤8 | 5°C | ≤12 | 25°C | | | Symbol | Parameter | V | V _{EE}
V | Min | Тур | Max | Min | Max | Min | Max | Unit | | t _{PLH} , | Maximum Propagation Delay, | 2.5 | 0 | | | 40 | | 45 | | 50 | ns | | t _{PHL} | Channel–Select to Analog | 3.0 | 0 | | | 28 | | 30 | | 35 | | | | Output | 4.5 | 0 | | | 23 | | 25 | | 30 | | | | (Figures 16 and 17) | 3.0 | -3.0 | | | 23 | | 25 | | 28 | | | t _{PLZ} , | Maximum Propagation Delay, | 2.5 | 0 | | | 40 | | 45 | | 50 | ns | | t _{PHZ} | Enable to Analog Output (Fig- | 3.0 | 0 | | | 28 | | 30 | | 35 | | | | ures 14 and 15) | 4.5 | 0 | | | 23 | | 25 | | 30 | | | | | 3.0 | -3.0 | | | 23 | | 25 | | 28 | | | t _{PZL} , | Maximum Propagation Delay, | 2.5 | 0 | | | 40 | | 45 | | 50 | ns | | t _{PZH} | Enable to Analog Output (Fig- | 3.0 | 0 | | | 28 | | 30 | | 35 | | | | ures 14 and 15) | 4.5 | 0 | | | 23 | | 25 | | 30 | | | | | 3.0 | -3.0 | | | 23 | | 25 | | 28 | | | | | | Typical @ 25°0 | C, V _{CC} = 5.0 V, V _{EE} = 0V | | |------------------|---|---|----------------|--|----| | C_{PD} | Power Dissipation Capacitance (Figure 18) (No | te 7) | | 45 | pF | | C _{IN} | Maximum Input Capacitance, Channel–Select | or Enable Inputs | 2_ | 10 | pF | | C _{I/O} | Maximum Capacitance
(All Switches Off) | Analog I/O
Common O/I
Feedthrough | | 10
10
1.0 | pF | ^{7.} Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$. ### ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V) | | | | v _{cc} | VEE | Тур | | |------------------|--|---|--------------------------|----------------------------|--------------------------|------| | Symbol | Parameter | Condition | V | V | 25°C | Unit | | BW | Maximum On–Channel
Bandwidth or Minimum
Frequency Response | V _{IS} = ½ (V _{CC} − V _{EE}) Ref and Test Attn = 10 dB Source Amplitude = 0 dB (Figure 7) | 3.0
4.5
6.0
3.0 | 0.0
0.0
0.0
- 3.0 | 80
80
80
80 | MHz | | V _{ISO} | Off-Channel Feedthrough Isolation | f = 1 MHz; $V_{IS} = \frac{1}{2} (V_{CC} - V_{EE})$
Adjust Network Analyzer output to 10 dBm on each output from the power splitter.
(Figures 8 and 9) | 3.0
4.5
6.0
3.0 | 0.0
0.0
0.0
- 3.0 | -70
-70
-70
-70 | dB | | V _{ONL} | Maximum Feedthrough
On Loss | V _{IS} = ½ (V _{CC} – V _{EE})
Adjust Network Analyzer output to 10 dBm on each
output from the power splitter.
(Figure 11) | 3.0
4.5
6.0
3.0 | 0.0
0.0
0.0
- 3.0 | -2
-2
-2
-2 | dB | | Q | Charge Injection | $\begin{aligned} &V_{IN} = V_{CC} \text{ to } V_{EE,} f_{IS} = 1 \text{ kHz, } t_r = t_f = 3 \text{ ns} \\ &R_{IS} = 0 \Omega, C_L = 1000 \text{ pF, } Q = C_L * \Delta V_{OUT} \\ &(\text{Figure 10}) \end{aligned}$ | 5.0
3.0 | 0.0
- 3.0 | 9.0
12 | pC | | THD | Total Harmonic Distortion
THD + Noise | $\begin{split} f_{IS} &= 1 \text{ MHz, R}_L = 10 \text{ K}\Omega, C_L = 50 \text{ pF,} \\ V_{IS} &= 5.0 \text{ V}_{PP} \text{ sine wave} \\ V_{IS} &= 6.0 \text{ V}_{PP} \text{ sine wave} \\ \text{(Figure 19)} \end{split}$ | 6.0
3.0 | 0.0
- 3.0 | 0.10
0.05 | % | Figure 4. On Resistance, Test Set-Up Figure 5. Maximum Off Channel Leakage Current, Any One Channel, Test Set-Up Figure 6. Maximum On Channel Leakage Current, Channel to Channel, Test Set-Up Figure 7. Maximum On Channel Bandwidth, Test Set-Up Figure 8. Maximum Off Channel Feedthrough Isolation, Test Set-Up Figure 9. Maximum Common-Channel Feedthrough Isolation, Test Set-Up *Includes all probe and jig capacitance. Figure 11. Maximum On Channel Feedthrough On Loss, Test Set-Up Figure 12. Break-Before-Make, Test Set-Up Figure 13. Break-Before-Make Time Figure 14. Propagation Delays, Channel Select to Analog Out Figure 15. Propagation Delay, Test Set-Up Channel Select to Analog Out Figure 16. Propagation Delays, Enable to Analog Out Figure 17. Propagation Delay, Test Set-Up Enable to Analog Out Figure 18. Power Dissipation Capacitance, Test Set-Up Figure 19. Total Harmonic Distortion, Test Set-Up #### **APPLICATIONS INFORMATION** The Channel Select and Enable control pins should be at V_{CC} or GND logic levels. V_{CC} being recognized as a logic high and GND being recognized as a logic low. In this example: $$V_{CC} = +5 \text{ V} = \text{logic high}$$ $GND = 0 \text{ V} = \text{logic low}$ The maximum analog voltage swing is determined by the supply voltages V_{CC} and V_{EE} . The positive peak analog voltage should not exceed V_{CC} . Similarly, the negative peak analog voltage should not go below V_{EE} . In this example, the difference between V_{CC} and V_{EE} is five volts. Therefore, using the configuration of Figure 21, a maximum analog signal of five volts peak—to—peak can be controlled. Unused analog inputs/outputs may be left floating (i.e., not connected). However, tying unused analog inputs and outputs to V_{CC} or GND through a low value resistor helps minimize crosstalk and feedthrough noise that may be picked up by an unused switch. Although used here, balanced supplies are not a requirement. The only constraints on the power supplies are that: $$\begin{split} V_{EE} - GND &= 0 \text{ to } -6 \text{ volts} \\ V_{CC} - GND &= 2.5 \text{ to } 6 \text{ volts} \\ V_{CC} - V_{EE} &= 2.5 \text{ to } 6 \text{ volts} \\ \text{and } V_{EE} &\leq GND \end{split}$$ When voltage transients above V_{CC} and/or below V_{EE} are anticipated on the analog channels, external Germanium or Schottky diodes (D_x) are recommended as shown in Figure 22. These diodes should be able to absorb the maximum anticipated current surges during clipping. Figure 20. Application Example Figure 21. Application Example TO EXTERNAL CMOS CIRCUITRY 0 to 5 V **DIGITAL SIGNALS** Figure 22. External Germanium or Schottky Clipping Diodes Figure 23. Function Diagram, LVXT4051 #### **PACKAGE DIMENSIONS** SOIC-16 **D SUFFIX** CASE 751B-05 **ISSUE J** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INC | HES | |-----|--------|--------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.27 | BSC | 0.050 BSC | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0° | 7° | 0° | 7° | | Р | 5.80 | 6.20 | 0.229 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | #### **PACKAGE DIMENSIONS** TSSOP-16 **DT SUFFIX** CASE 948F-01 **ISSUE O** - IES: DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. - SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD - DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. | | MILLIN | IETERS | INCHES | | |-----|----------|--------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 BSC | | 0.026 BSC | | | Н | 0.18 | 0.28 | 0.007 | 0.011 | | 7 | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 BSC | | 0.252 BSC | | | М | 0° | 8° | 0° | 8° | #### PACKAGE DIMENSIONS #### **SOIC EIAJ-16 M SUFFIX** CASE 966-01 **ISSUE O** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI - Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. - S DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR - REFERENCE ONLY. THE LEAD WIDTH DIMENSION (b) DOES NOT - THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018). | | MILLIMETERS | | INCHES | | |----------------|-------------|-------|-----------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | | 2.05 | | 0.081 | | A ₁ | 0.05 | 0.20 | 0.002 | 0.008 | | b | 0.35 | 0.50 | 0.014 | 0.020 | | C | 0.18 | 0.27 | 0.007 | 0.011 | | D | 9.90 | 10.50 | 0.390 | 0.413 | | Е | 5.10 | 5.45 | 0.201 | 0.215 | | е | 1.27 BSC | | 0.050 BSC | | | HE | 7.40 | 8.20 | 0.291 | 0.323 | | L | 0.50 | 0.85 | 0.020 | 0.033 | | LE | 1.10 | 1.50 | 0.043 | 0.059 | | M | 0 ° | 10 ° | 0 ° | 10° | | Q ₁ | 0.70 | 0.90 | 0.028 | 0.035 | | Z | | 0.78 | | 0.031 | ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. #### **PUBLICATION ORDERING INFORMATION** #### Literature Fulfillment Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 **Phone**: 81–3–5740–2700 **Email**: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.