Low-Voltage CMOS Octal Transceiver/Registered Transceiver With Dual Enable With 5V-Tolerant Inputs and Outputs (3-State, Non-Inverting)

The MC74LCX652 is a high performance, non-inverting octal transceiver/registered transceiver operating from a 2.7 to 3.6V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5V allows MC74LCX652 inputs to be safely driven from 5V devices. The MC74LCX652 is suitable for memory address driving and all TTL level bus oriented transceiver applications.

Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes from a LOW-to-HIGH logic level. Two Output Enable pins (OEBA, OEAB) are provided to control the transceiver outputs. In the transceiver mode, data present at the high impedance port may be stored in either the A or the B register or in both. The select controls (SBA, SAB) can multiplex stored and real-time (transparent mode) data. In the isolation mode (both outputs disabled), A data may be stored in the B register or B data may be stored in the A register. When in the real-time mode, it is possible to store data without using the internal registers by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input (data retention is not guaranteed in this mode).

- Designed for 2.7 to 3.6V VCC Operation
- 5V Tolerant Interface Capability With 5V TTL Logic
- · Supports Live Insertion and Withdrawal
- IOFF Specification Guarantees High Impedance When VCC = 0V
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500mA
- ESD Performance: Human Body Model >2000V; Machine Model >200V

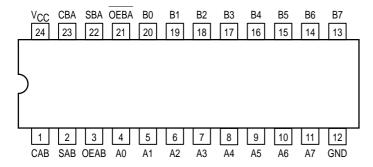


Figure 1. 24-Lead Pinout (Top View)

MC74LCX652

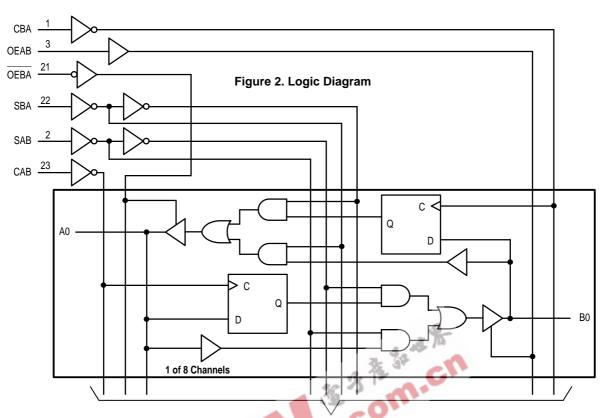
LCX

LOW-VOLTAGE CMOS OCTAL TRANSCEIVER/ REGISTERED TRANSCEIVER WITH DUAL ENABLE

DW SUFFIX 24-LEAD PLASTIC SOIC PACKAGE CASE 751E-04

SD SUFFIX 24-LEAD PLASTIC SSOP PACKAGE CASE 940D-03

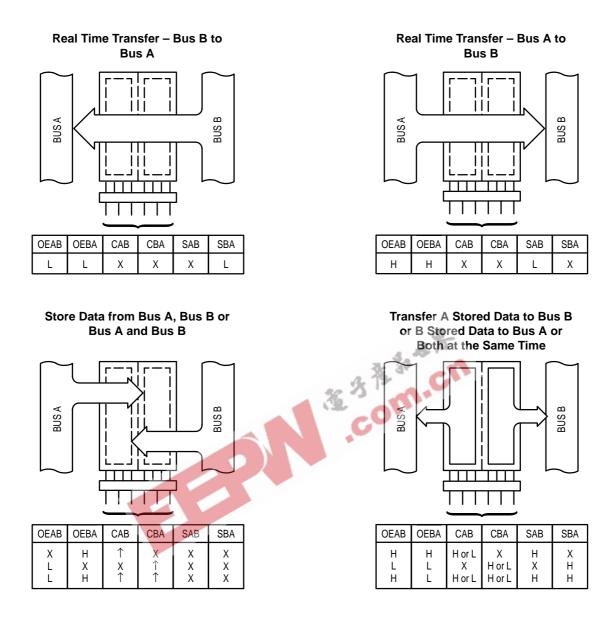
DT SUFFIX 24-LEAD PLASTIC TSSOP PACKAGE CASE 948H-01


PIN NAMES

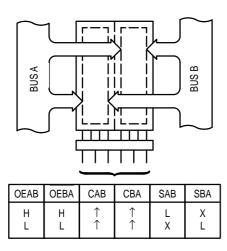
Pins	Function
A0–A7	Side A Inputs/Outputs
B0-B7	Side B Inputs/Outputs
CAB, CBA	Clock Pulse Inputs
SAB, SBA	Select Control Inputs
OEBA, OEAB	Output Enable Inputs

3/97

MC74LCX652



To 7 Other Channels


FUNCTION TABLE

		Ir	nputs			Data	Ports	
OEAB	ОЕВА	CAB	СВА	SAB	SBA	An	Bn	Operating Mode
L	Н					Input	Input	
		1	1	Х	Х	Х	Х	Isolation, Hold Storage
		1	\uparrow	Х	Х	l h	l h	Store A and/or B Data
Н	Н					Input	Output	
		1	X*	L	Х	L H	L H	Real Time A Data to B Bus
				Н	Х	Х	QA	Stored A Data to B Bus
		1	X*	L	Х	l h	L H	Real Time A Data to B Bus; Store A Data
				Н	Х	L H	QA QA	Clock A Data to B Bus; Store A Data
L	L					Output	Input	
		X*		Х	L	L H	L H	Real Time B Data to A Bus
				Х	Н	QB	Х	Stored B Data to A Bus
		X*	1	Х	L	LH	l h	Real Time B Data to A Bus; Store B Data
				Х	Н	QB QB	L H	Clock B Data to A Bus; Store B Data
Н	L					Output	Output	
		1	1	Н	Н	QB	QA	Stored A Data to B Bus, Stored B Data to A Bus

H = High Voltage Level; h = High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; L = Low Voltage Level; I = Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition; X = Don't Care; 1 = Low-to-High Clock Transition; A = NOT Low-to-High Clock Transition; QA = A input storage register; QB = B input storage register; * = The clocks are not internally gated with either the Output Enables or the Source Inputs. Therefore, data at the A or B ports may be clocked into the storage registers, at any time. For I_{CC} reasons, Do Not Float Inputs.

Store Bus A in Both Registers or Store Bus B in Both Registers

Isolation

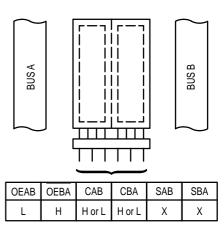


Figure 3. Bus Applications

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Condition	Unit
VCC	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_1 \le +7.0$		V
VO	DC Output Voltage	$-0.5 \le V_{O} \le +7.0$	Output in 3-State	V
		$-0.5 \le V_{O} \le V_{CC} + 0.5$	Note 1.	V
lıK	DC Input Diode Current	-50	V _I < GND	mA
lok	DC Output Diode Current	-50	V _O < GND	mA
		+50	AO > ACC	mA
IO	DC Output Source/Sink Current	±50		mA
Icc	DC Supply Current Per Supply Pin	±100		mA
IGND	DC Ground Current Per Ground Pin	±100		mA
TSTG	Storage Temperature Range	-65 to +150		°C

^{*} Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute—maximum—rated conditions is not implied.

1. Output in HIGH or LOW State. Io absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	25	Min	Тур	Max	Unit
VCC	Supply Voltage	Operating Data Retention Only	2.0 1.5	3.3 3.3	3.6 3.6	V
VI	Input Voltage		0		5.5	V
VO	Output Voltage	(HIGH or LOW State) (3–State)	0 0		V _{CC} 5.5	V
loн	HIGH Level Output Current, V _{CC} = 3.0V	/ – 3.6V			-24	mA
loL	LOW Level Output Current, V _{CC} = 3.0V	- 3.6V			24	mA
loн	HIGH Level Output Current, V _{CC} = 2.7V	/ – 3.0V			-12	mA
loL	LOW Level Output Current, V _{CC} = 2.7V	-3.0V			12	mA
T _A	Operating Free-Air Temperature		-40		+85	°C
Δt/ΔV	Input Transition Rise or Fall Rate, V _{IN} fr V _{CC} = 3.0V	om 0.8V to 2.0V,	0		10	ns/V

DC ELECTRICAL CHARACTERISTICS

			T _A = -40°C	to +85°C	
Symbol	Characteristic	Condition	Min	Max	Unit
VIH	HIGH Level Input Voltage (Note 2.)	2.7V ≤ V _{CC} ≤ 3.6V	2.0		V
V _{IL}	LOW Level Input Voltage (Note 2.)	2.7V ≤ V _{CC} ≤ 3.6V		0.8	V
Vон	HIGH Level Output Voltage	$2.7V \le V_{CC} \le 3.6V$; $I_{OH} = -100\mu A$	V _{CC} - 0.2		V
		$V_{CC} = 2.7V; I_{OH} = -12mA$	2.2		
		V _{CC} = 3.0V; I _{OH} = -18mA	2.4		
		$V_{CC} = 3.0V; I_{OH} = -24mA$	2.2		
VOL	LOW Level Output Voltage	$2.7V \le V_{CC} \le 3.6V$; $I_{OL} = 100\mu A$		0.2	V
		V _{CC} = 2.7V; I _{OL} = 12mA		0.4	
		V _{CC} = 3.0V; I _{OL} = 16mA		0.4	
		$V_{CC} = 3.0V; I_{OL} = 24mA$		0.55	

^{2.} These values of V_I are used to test DC electrical characteristics only.

DC ELECTRICAL CHARACTERISTICS (continued)

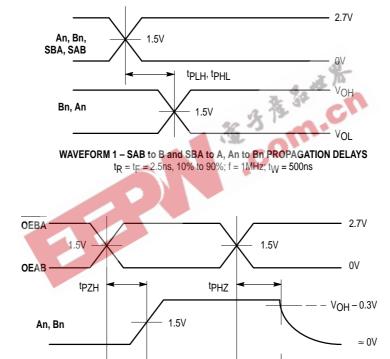
			T _A = -40°C to +85°C		
Symbol	Characteristic	Condition	Min	Max	Unit
Ц	Input Leakage Current	$2.7V \le V_{CC} \le 3.6V; \ 0V \le V_{I} \le 5.5V$		±5.0	μΑ
loz	3–State Output Current	$2.7 \le V_{CC} \le 3.6V$; $0V \le V_{O} \le 5.5V$; $V_{I} = V_{IH}$ or V_{IL}		±5.0	μΑ
lOFF	Power-Off Leakage Current	$V_{CC} = 0V$; V_I or $V_O = 5.5V$		10	μΑ
ICC	Quiescent Supply Current	$2.7 \le V_{CC} \le 3.6V$; $V_I = GND$ or V_{CC}		10	μΑ
		$2.7 \le V_{CC} \le 3.6V$; $3.6 \le V_I$ or $V_O \le 5.5V$		±10	μΑ
Δlcc	Increase in I _{CC} per Input	$2.7 \le V_{CC} \le 3.6V; V_{IH} = V_{CC} - 0.6V$		500	μΑ

AC CHARACTERISTICS ($t_R = t_F = 2.5 \text{ns}$; $C_L = 50 \text{pF}$; $R_L = 500 \Omega$)

				Lim	its		
				T _A = -40°0	C to +85°C		
			V _{CC} = 3.0	V to 3.6V	VCC	= 2.7V	1
Symbol	Parameter	Waveform	Min 4	Max	Min	Max	Unit
f _{max}	Clock Pulse Frequency	3	150	C			MHz
tPLH tPHL	Propagation Delay Input to Output	13	1.5 1. 5	7.0 7.0	1.5 1.5	8.0 8.0	ns
^t PLH ^t PHL	Propagation Delay Clock to Output	3	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
^t PLH ^t PHL	Propagation Delay Select to Output	1	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
^t PZH ^t PZL	Output Enable Time to High and Low Level	2	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
^t PHZ ^t PLZ	Output Disable Time From High and Low Level	2	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
t _S	Setup Time, HIGH or LOW Data to Clock	3	2.5		2.5		ns
th	Hold Time, HIGH or LOW Data to Clock	3	1.5		1.5		ns
t _W	Clock Pulse Width, HIGH or LOW	3	3.3		3.3		ns
toshl toslh	Output-to-Output Skew (Note 3.)			1.0 1.0			ns

Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.
 The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH); parameter guaranteed by design.

DYNAMIC SWITCHING CHARACTERISTICS


			T _A = +25°C			
Symbol	Characteristic	Condition	Min	Тур	Max	Unit
VOLP	Dynamic LOW Peak Voltage (Note 4.)	$V_{CC} = 3.3V$, $C_L = 50pF$, $V_{IH} = 3.3V$, $V_{IL} = 0V$		0.8		V
V _{OLV}	Dynamic LOW Valley Voltage (Note 4.)	$V_{CC} = 3.3V$, $C_L = 50pF$, $V_{IH} = 3.3V$, $V_{IL} = 0V$		0.8		V

^{4.} Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state. The LCX652 is characterized with 7 outputs switching with 1 output held LOW.

5

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C _{IN}	Input Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	7	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	10MHz, $V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC}	25	pF

WAVEFORM 2 – OEBA/OEAB to An/Bn OUTPUT ENABLE AND DISABLE TIMES $t_R=t_F=2.5 ns, \ 10\% \ to \ 90\%; \ f=1MHz; \ t_W=500 ns$

1.5V

tPLZ -

≈ 3.0V

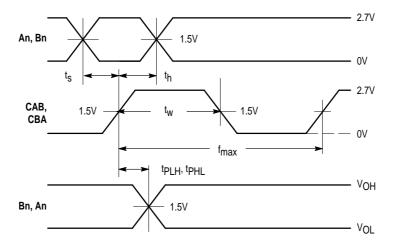

 $V_{OL} + 0.3V$

Figure 4. AC Waveforms

MOTOROLA

^tPZL

An, Bn

WAVEFORM 3 - CLOCK to Bn/An PROPAGATION DELAYS, CLOCK MINIMUM PULSE WIDTH, An/Bn to CLOCK SETUP AND HOLD TIMES

 $t_R = t_F = 2.5$ ns, 10% to 90%; f = 1MHz; $t_W = 500$ ns except when noted

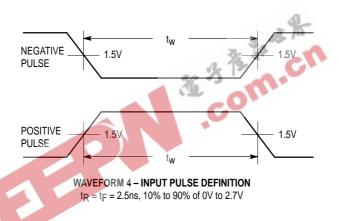
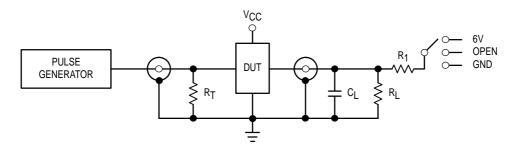
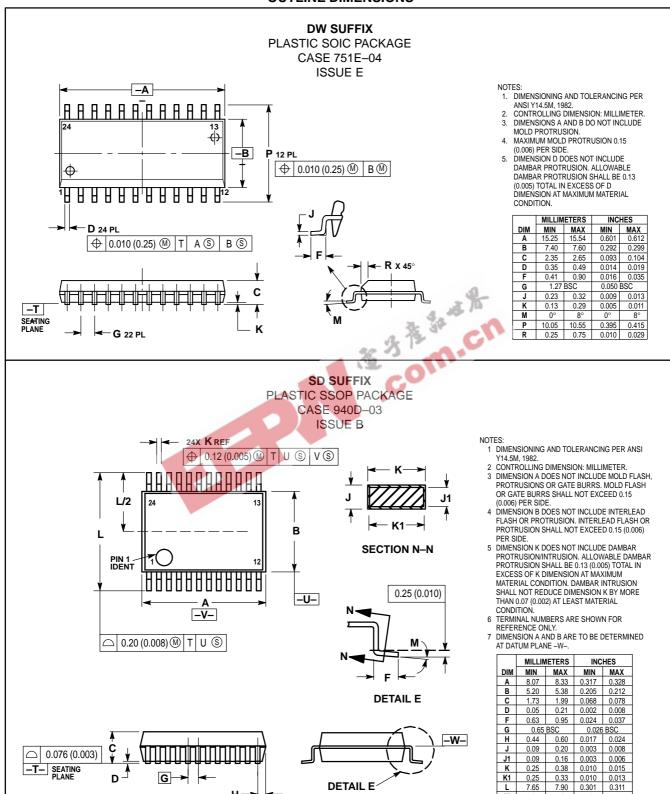
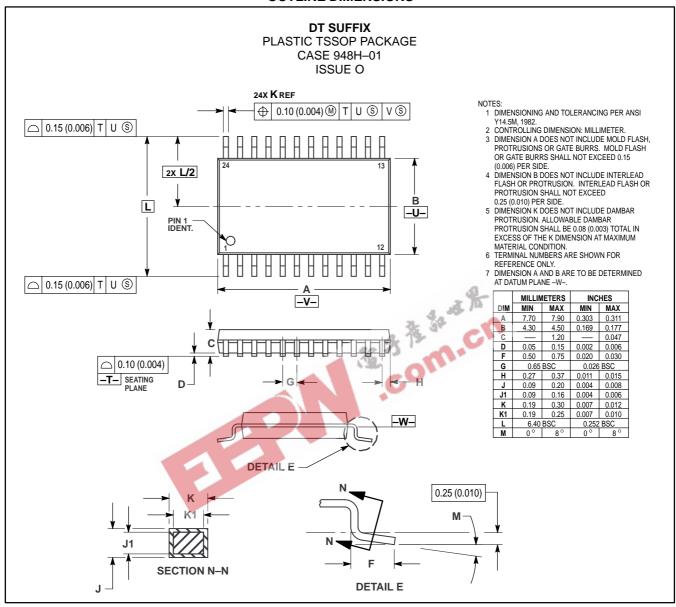



Figure 5. AC Waveforms (continued)


TEST	SWITCH
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6V
Open Collector/Drain tpLH and tpHL	6V
tPZH, tPHZ	GND

 C_L = 50pF or equivalent (Includes jig and probe capacitance) R_L = R_1 = 500 Ω or equivalent R_T = Z_{OUT} of pulse generator (typically 50 Ω)

Figure 6. Test Circuit


7

OUTLINE DIMENSIONS

7.65

OUTLINE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury $or death\,may\,occur.\,Should\,Buyer\,pur chase\,or\,use\,Motorola\,products\,for\,any\,such\,unintended\,or\,unauthorized\,application,\,Buyer\,shall\,indemnify\,and\,hold\,Motorola\,pulling\,application,\,Buyer\,shall\,indemnify\,and\,hold\,Motorola\,pulling\,application,\,Buyer\,shall\,indemnify\,and\,hold\,Motorola\,pulling\,application,\,Buyer\,shall\,indemnify\,and\,hold\,Motorola\,pulling\,application,\,Buyer\,shall\,indemnify\,and\,hold\,Motorola\,pulling\,application,\,Buyer\,shall\,indemnify\,and\,hold\,Motorola\,pulling\,application,\,Buyer\,shall\,indemnify\,and\,hold\,Motorola\,pulling\,application,\,Buyer\,shall\,indemnify\,and\,hold\,Motorola\,pulling\,application,\,Buyer\,shall\,indemnify\,and\,hold\,Motorola\,pulling\,application,\,Buyer\,shall\,indemnify\,and\,hold\,Motorola\,pulling\,application,\,Buyer\,shall\,indemnify\,and\,hold\,Motorola\,pulling\,application,\,Buyer\,shall\,indemnify\,and\,hold\,Motorola\,pulling\,application,\,Buyer\,shall\,indemnify\,and\,hold\,Motorola\,pulling\,application,\,Buyer\,shall\,indemnify\,application,\,Buyer\,shal$ and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees and its officers, employees, substitutions national nations against an oranges, and expenses, and ex Opportunity/Affirmative Action Employer.

Mfax is a trademark of Motorola, Inc.

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 - US & Canada ONLY 1-800-774-1848

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

INTERNET: http://www.mot.com/SPS/

MC74LCX652/D