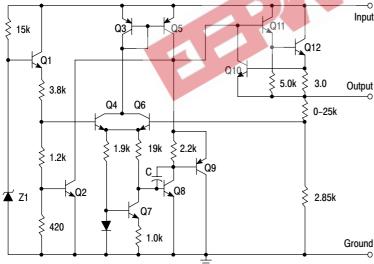
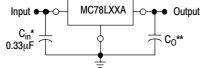
100 mA Positive Voltage Regulators


The MC78L00A Series of positive voltage regulators are inexpensive, easy-to-use devices suitable for a multitude of applications that require a regulated supply of up to 100 mA. Like their higher powered MC7800 and MC78M00 Series cousins, these regulators feature internal current limiting and thermal shutdown making them remarkably rugged. No external components are required with the MC78L00 devices in many applications.

These devices offer a substantial performance advantage over the traditional zener diode-resistor combination, as output impedance and quiescent current are substantially reduced.


Features

- Wide Range of Available, Fixed Output Voltages
- Low Cost

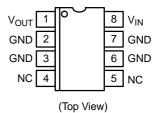
- NO External Components Required
 Complementary Negative Regulators Offered (MC79L00A Series)
 Pb-Free Packages are Available
 NCV Prefix for Automotive contraction and Control Changes

Figure 1. Representative Schematic Diagram

Figure 2. Standard Application

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

- *Cin is required if regulator is located an appreciable distance from power supply filter.
- ** C_O is not needed for stability; however, it does improve transient response.


ON Semiconductor®

http://onsemi.com

*SOIC-8 is an internally modified SO-8 package. Pins 2, 3, 6, and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and increases power dissipation capability when appropriately mounted on a printed circuit board. SOIC-8 conforms to all external dimensions of the standard SO-8 package.

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 13 of this data sheet.

MAXIMUM RATINGS ($T_A = +125^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (2.6 V–8.0 V) (12 V–18 V) (24 V)	VI	30 35 40	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Operating Junction Temperature Range	TJ	0 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS (V_I = 10 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J < +125°C (for MC78LXXAB, NCV78L05A), 0°C < T_J < +125°C (for MC78LXXAC), unless otherwise noted.)

		MC78L05	GAC, AB, NC	V78L05A	
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	4.8	5.0	5.2	Vdc
Line Regulation ($T_J = +25^{\circ}C$, $I_O = 40$ mA)	Reg _{line}				mV
7.0 Vdc \leq V _I \leq 20 Vdc 8.0 Vdc \leq V _I \leq 20 Vdc		-	55 45	150 100	
Load Regulation (T _J = +25°C, 1.0 mA \leq I _O \leq 100 mA)	Reg _{load}	A. K.	11	60	mV
$(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})^{-1}$	36 3	¢ –	5.0	30	
Output Voltage (7.0 Vdc \leq V _I \leq 20 Vdc, 1.0 mA \leq I _O \leq 40 mA) (V _I = 10 V, 1.0 mA \leq I _O \leq 70 mA)	Yo T	4.75 4.75	-	5.25 5.25	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	IB	-	3.8 -	6.0 5.5	mA
Input Bias Current Change (8.0 Vdc \leq V ₁ \leq 20 Vdc)	Δl _{IB}	_	_	1.5	mA
$(1.0 \text{ mA} \le I_0 \le 40 \text{ mA})$		-	-	0.1	
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq 100$ kHz)	Vn	-	40	-	μV
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 8.0 Vdc \leq V _I \leq 18 V, T _J = +25°C)	RR	41	49	-	dB
Dropout Voltage ($T_J = +25^{\circ}C$)	$V_I - V_O$	-	1.7	-	Vdc

NOTE: NCV78L05A: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

ELECTRICAL CHARACTERISTICS (V_I = 14 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J < +125°C (for MC78LXXAB), 0°C < T_J < +125°C (for MC78LXXAC), unless otherwise noted.)

		MC78L08AC, AB			
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	V _O	7.7	8.0	8.3	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 40 \text{ mA})$	Reg _{line}				mV
10.5 Vdc \leq V _I \leq 23 Vdc 11 Vdc \leq V _I \leq 23 Vdc			20 12	175 125	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}		15 8.0	80 40	mV
	Vo	7.6 7.6	-	8.4 8.4	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}		3.0 -	6.0 5.5	mA
Input Bias Current Change (11 Vdc \leq V _I \leq 23 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}	-	-	1.5 0.1	mA
Output Noise Voltage (T _A = +25°C, 10 Hz \leq f \leq 100 kHz)	V _n	15	60	-	μV
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 12 V \leq V _I \leq 23 V, T _J = +25°C)	RR	37	57	-	dB
Dropout Voltage ($T_J = +25^{\circ}C$)	V _I – V _O		1.7	-	Vdc

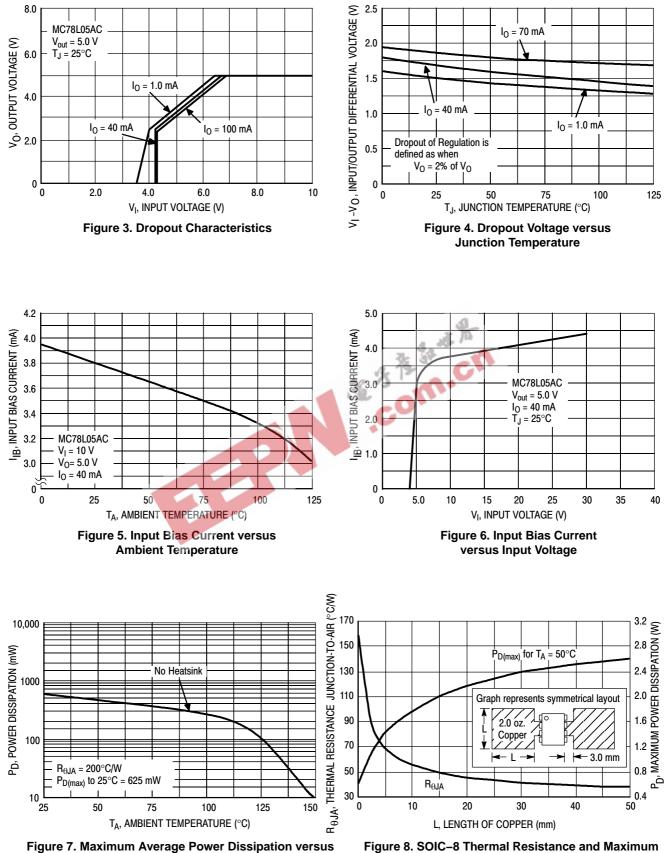
ELECTRICAL CHARACTERISTICS (V_I = 15 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J < +125°C (for MC78LXXAB), 0°C < T_J < +125°C (for MC78LXXAC), unless otherwise noted.)

		MC78L09AC, AB			
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	V _O	8.6	9.0	9.4	Vdc
Line Regulation ($T_J = +25^{\circ}C$, $I_O = 40$ mA)	Reg _{line}				mV
11.5 Vdc \leq V _I \leq 24 Vdc 12 Vdc \leq V _I \leq 24 Vdc			20 12	175 125	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}		15 8.0	90 40	mV
	Vo	8.5 8.5		9.5 9.5	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}		3.0 -	6.0 5.5	mA
Input Bias Current Change (11 Vdc \leq V _I \leq 23 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}			1.5 0.1	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq 100$ kHz)	Vn	-	60	-	μV
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 13 V \leq V _I \leq 24 V, T _J = +25°C)	RR	37	57	-	dB
Dropout Voltage $(T_J = +25^{\circ}C)$	V _I – V _O	-	1.7	-	Vdc

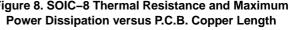
ELECTRICAL CHARACTERISTICS (V_I = 19 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J < +125°C (for MC78LXXAB), 0°C < T_J < +125°C (for MC78LXXAC), unless otherwise noted.)

			MC78L12AC, AB		
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	11.5	12	12.5	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 40 \text{ mA})$ $14.5 \text{ Vdc} \le V_I \le 27 \text{ Vdc}$	Reg _{line}	_	120	250	mV
$16 \text{ Vdc} \le V_1 \le 27 \text{ Vdc}$		_	100	200	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}		20 10	100 50	mV
	Vo	11.4 11.4		12.6 12.6	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	Ι _{ΙΒ}		4.2 -	6.5 6.0	mA
Input Bias Current Change (16 Vdc \leq V _I \leq 27 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}	A.M.		1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	Vn	-Cr	80	-	μV
Ripple Rejection ($I_O = 40$ mA, f = 120 Hz, 15 V \leq V _I \leq 25 V, T _J = +25°C)	RR	37	42	-	dB
Dropout Voltage $(T_J = +25^{\circ}C)$	$v_1 - v_0$	_	1.7	-	Vdc

ELECTRICAL CHARACTERISTICS (V₁ = 23 V, I₀ = 40 mA, C₁ = 0.33 μ F, C₀ = 0.1 μ F, -40°C < T_J < +125°C (for MC78LXXAB), 0°C < T_J < +125°C (for MC78LXXAC), unless otherwise noted.)


	MC78L15AC, AB		AB		
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage (T _J = +25°C)	Vo	14.4	15	15.6	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 40 \text{ mA})$ $17.5 \text{ Vdc} \le V_I \le 30 \text{ Vdc}$	Reg _{line}	_	130	300	mV
$20 \text{ Vdc} \le V_1 \le 30 \text{ Vdc}$		-	110	250	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}		25 12	150 75	mV
	Vo	14.25 14.25		15.75 15.75	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	Ι _{ΙΒ}		4.4	6.5 6.0	mA
Input Bias Current Change (20 Vdc \leq V _I \leq 30 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}			1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	-	90	-	μV
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 18.5 V \leq V _I \leq 28.5 V, T _J = +25°C)	RR	34	39	-	dB
Dropout Voltage $(T_J = +25^{\circ}C)$	V _I – V _O	-	1.7	-	Vdc

	MC78L18AC				
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	17.3	18	18.7	Vdc
	Reg _{line}		45 35	325 275	mV
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}		30 15	170 85	mV
	Vo	17.1 17.1	-	18.9 18.9	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}	-	3.1 -	6.5 6.0	mA
Input Bias Current Change (22 Vdc \leq V _I \leq 33 Vdc) (21 Vdc \leq V _I \leq 33 Vdc) (1.0 mA \leq I _O \leq 40 mA)	ΔI _{IB}	2	-	1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	Vn	N **	150	-	μV
Ripple Rejection ($I_0 = 40$ mA, f = 120 Hz, 23 V $\leq V_I \leq$ 33 V, T _J = +25°C)	RR	33	48	-	dB
Dropout Voltage $(T_J = +25^{\circ}C)$	V _I – V _O	-	1.7	-	Vdc
		•			•


 $\textbf{ELECTRICAL CHARACTERISTICS} (V_{I} = 27 \text{ V}, \text{ } I_{O} = 40 \text{ mA}, \text{ } C_{I} = 0.33 \text{ } \mu\text{F}, \text{ } C_{O} = 0.1 \text{ } \mu\text{F}, 0^{\circ}\text{C} < \text{T}_{J} < +125^{\circ}\text{C}, \text{ unless otherwise noted.})$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MC78L24AC				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Characteristics	Symbol	Min	Тур	Max	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Vo	23	24	25	Vdc
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$(T_J = +25^{\circ}C, I_O = 40 \text{ mA})$	Reg _{line}				mV
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$28 \text{ Vdc} \le \text{V}_{\text{I}} \le 80 \text{ Vdc}$		_ _ _	50		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$	Reg _{load}		-		mV
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{l} (28 \ \mbox{Vdc} \le V_I \le 38 \ \mbox{Vdc}, \ 1.0 \ \mbox{mA} \le I_O \le 40 \ \mbox{mA}) \\ (27 \ \mbox{Vdc} \le V_I \le 38 \ \mbox{Vdc}, \ 1.0 \ \mbox{mA} \le I_O \le 40 \ \mbox{mA}) \\ (28 \ \mbox{Vdc} \le V_I = 33 \ \mbox{Vdc}, \ 1.0 \ \mbox{mA} \le I_O \le 70 \ \mbox{mA}) \end{array} $	Vo		-	-	Vdc
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Bias Current $(T_J = +25^{\circ}C)$	I _{IB}			6.5	mA
$(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$ Image: Constraint of the second s	$(28 \text{ Vdc} \le \text{V}_1 \le 38 \text{ Vdc})$	Δl _{IB}	A.	-		mA
$f = 120 \text{ Hz}, 29 \text{ V} \le \text{V}_{\text{I}} \le 35 \text{ V}, \text{T}_{\text{J}} = +25^{\circ}\text{C}$ Dropout Voltage $V_{\text{I}} = V_{\text{O}}$ - 1.7 - Vdecomposition		Vn	25	200	-	μV
5		RR	31	45	-	dB
$(T_J = +25^{\circ}C)$	Dropout Voltage ($T_J = +25^{\circ}C$)	$V_1 - V_0$	-	1.7	-	Vdc

 $\textbf{ELECTRICAL CHARACTERISTICS} (V_{I} = 33 \text{ V}, \text{ I}_{O} = 40 \text{ mA}, \text{ C}_{I} = 0.33 \text{ }\mu\text{F}, \text{ C}_{O} = 0.1 \text{ }\mu\text{F}, 0^{\circ}\text{C} < \text{T}_{J} < +125^{\circ}\text{C}, \text{ unless otherwise noted.})$

Ambient Temperature – TO–92 Type Package

APPLICATIONS INFORMATION

Design Considerations

The MC78L00A Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short Circuit Protection limits the maximum current the circuit will pass.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. The input bypass capacitor should be selected to provide good high–frequency characteristics to insure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

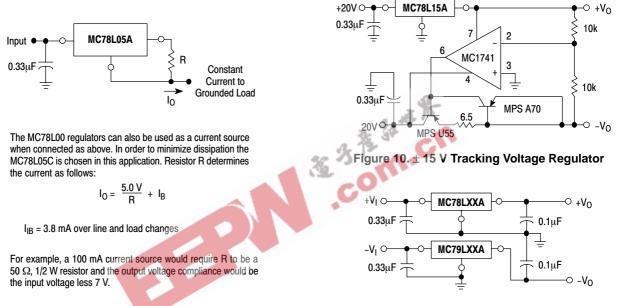


Figure 9. Current Regulator

Figure 11. Positive and Negative Regulator

ORDERING INFORMATION

Device	Output Voltage	Operating Temperature Range	Package	Shipping [†]
MC78L05ABD			SOIC-8	98 Units/Rail
MC78L05ABDG			SOIC-8	98 Units/Rail
MC78L05ABDR2			SOIC-8	2500 Tape & Reel
MC78L05ABDR2G			SOIC-8 (Pb-Free)	2500 Tape & Reel
NCV78L05ABDR2*			SOIC-8	2500 Tape & Reel
MC78L05ABP			TO-92	2000 Units/Bag
MC78L05ABPG		T _J = −40° to +125°C	TO-92 (Pb-Free)	2000 Units/Bag
MC78L05ABPRA		19 40 10 1120 0	TO-92	2000 Tape & Reel
MC78L05ABPRAG			TO-92 (Pb-Free)	2000 Tape & Reel
MC78L05ABPRE			TO-92	2000 Tape & Reel
MC78L05ABPREG			TO-92 (Pb-Free)	2000 Tape & Reel
MC78L05ABPRM		a. 1	TO-92	2000 Ammo Pack
MC78L05ABPRMG		·派·为书	TO-92 (Pb-Free)	2000 Ammo Pack
MC78L05ACD		- CO'	SOIC-8	98 Units/Rail
MC78L05ACDG	5.0 V		SOIC-8 (Pb-Free)	98 Units/Rail
MC78L05ACDR2			SOIC-8	2500 Tape & Reel
MC78L05ACDR2G			SOIC-8 (Pb-Free)	2500 Tape & Reel
MC78L05ACP			TO-92	2000 Units/Bag
MC78L05ACPG			TO-92 (Pb-Free)	2000 Units/Bag
MC78L05ACPRA			TO-92	2000 Tape & Reel
MC78L05ACPRAG		$T_J = 0^\circ$ to +125°C	TO-92 (Pb-Free)	2000 Tape & Reel
MC78L05ACPRE			TO-92	2000 Tape & Reel
MC78L05ACPREG			TO-92 (Pb-Free)	2000 Tape & Reel
MC78L05ACPRM			TO-92	2000 Ammo Pack
MC78L05ACPRMG			TO-92 (Pb-Free)	2000 Ammo Pack
MC78L05ACPRP			TO-92	2000 Ammo Pack
MC78L05ACPRPG			TO–92 (Pb–Free)	2000 Ammo Pack

*NCV78L05A: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change

control.
 †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ORDERING INFORMATION

Device	Output Voltage	Operating Temperature Range	Package	Shipping [†]
MC78L08ABD			SOIC-8	98 Units/Rail
MC78L08ABDG			SOIC-8 (Pb-Free)	98 Units/Rail
MC78L08ABDR2			SOIC-8	2500 Tape & Reel
MC78L08ABDR2G		$T_J = -40^\circ$ to $+125^\circ$ C	SOIC-8 (Pb-Free)	2500 Tape & Reel
MC78L08ABP			TO-92	2000 Units/Bag
MC78L08ABPRA			TO-92	2000 Tape & Reel
MC78L08ABPRP			TO-92	2000 Ammo Pack
MC78L08ACD			SOIC-8	98 Units/Rail
MC78L08ACDG	8.0 V		SOIC-8	98 Units/Rail
MC78L08ACDR2	0.0 V		SOIC-8	2500 Tape & Reel
MC78L08ACP			TO-92	2000 Units/Bag
MC78L08ACPG			TO-92 (Pb-Free)	2000 Units/Bag
MC78L08ACPRA		T _J = 0° to +125°C	TO-92	2000 Tape & Reel
MC78L08ACPRAG		T _J = 0° to +125°C	TO-92 (Pb-Free)	2000 Tape & Reel
MC78L08ACPRE		CO.	TO-92	2000 Tape & Reel
MC78L08ACPRP			TO-92	2000 Ammo Pack
MC78L08ACPRPG			TO-92 (Pb-Free)	2000 Ammo Pack
MC78L09ABD			SOIC-8	98 Units/Rail
MC78L09ABDG			SOIC-8 (Pb-Free)	98 Units/Rail
MC78L09ABDR2		T 400 to 140500	SOIC-8	2500 Tape & Reel
MC78L09ABPRA		$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92	2000 Tape & Reel
MC78L09ABPRP			TO-92	2000 Ammo Pack
MC78L09ABDG			SOIC-8 (Pb-Free)	98 Units/Rail
MC78L09ACD			SOIC-8	98 Units/Rail
MC78L09ACDG	9.0 V		SOIC-8 (Pb-Free)	98 Units/Rail
MC78L09ACDR2			SOIC-8	2500 Tape & Reel
MC78L09ACDR2G			SOIC-8 (Pb-Free)	2500 Tape & Reel
MC78L09ACP		$T_J = 0^\circ$ to +125°C	TO-92	2000 Units/Bag
MC78L09ACPG			TO-92 (Pb-Free)	2000 Units/Bag
MC78L09ACDR2G			SOIC-8 (Pb-Free)	2500 Tape & Reel
MC78L09ACPG			TO–92 (Pb–Free)	2000 Units/Bag

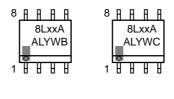
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

ORDERING INFORMATION

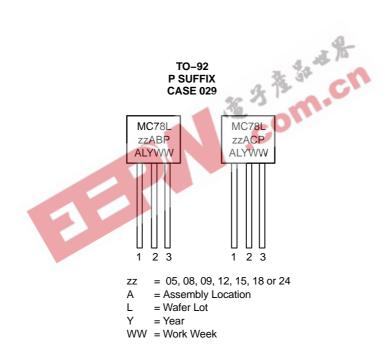
Device	Output Voltage	Operating Temperature Range	Package	Shipping [†]
MC78L12ABD			SOIC-8	98 Units/Rail
MC78L12ABDR2			SOIC-8	2500 Tape & Reel
MC78L12ABP		$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92	2000 Units/Bag
MC78L12ABPRP			TO-92	2000 Ammo Pack
NCV78L12ABDR2*			SOIC_8	2500 Tape & Reel
MC78L12ACD			SOIC-8	98 Units/Rail
MC78L12ACDR2			SOIC-8	2500 Tape & Reel
MC78L12ACP			TO-92	2000 Units/Bag
MC78L12ACPRA			TO-92	2000 Tape & Reel
MC78L12ACPRAG	12 V		TO-92 (Pb-Free)	2000 Tape & Reel
MC78L12ACPRE			TO-92	2000 Tape & Reel
MC78L12ACPRM		T 00/ 10-00	TO-92	2000 Ammo Pack
MC78L12ACPRMG		$T_J = 0^\circ \text{ to } + 125^\circ \text{C}$	TO-92 (Pb-Free)	2000 Ammo Pack
MC78L12ACPRP		1. 4	TO-92	2000 Ammo Pack
MC78L12ACPRPG		·爱·芬·隆·	TO-92 (Pb-Free)	2000 Ammo Pack
MC78L12ACDR2G			SOIC-8 (Pb-Free)	2500 Tape & Reel
MC78L12ACPG			TO-92 (Pb-Free)	2000 Units/Bag
MC78L15ABD			SOIC-8	98 Units/Rail
MC78L15ABDR2			SOIC-8	2500 Tape & Reel
MC78L15ABDR2G			SOIC-8 (Pb-Free)	2500 Tape & Reel
MC78L15ABP		$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92	2000 Units/Bag
MC78L15ABPRA			TO-92	2000 Tape & Reel
MC78L15ABPRP			TO-92	2000 Ammo Pack
MC78L15ABPRPG	15 V		TO-92 (Pb-Free)	2000 Ammo Pack
MC78L15ACD			SOIC-8	98 Units/Rail
MC78L15ACDR2			SOIC-8	2500 Tape & Reel
MC78L15ACP			TO-92	2000 Units/Bag
MC78L15ACPRA		$T_J = 0^\circ$ to +125°C	TO-92	2000 Tape & Reel
MC78L15ACPRAG			TO–92 (Pb–Free)	2000 Tape & Reel
MC78L15ACPRP			TO-92	2000 Ammo Pack

*NCV78L12A: T_{low} = -40°C, T_{high} = +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and change control.

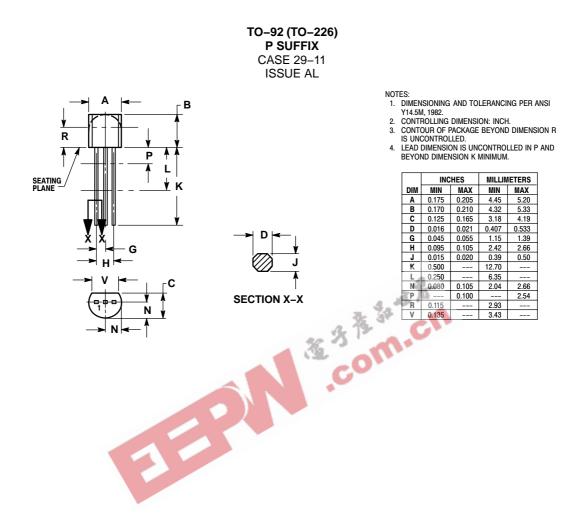
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

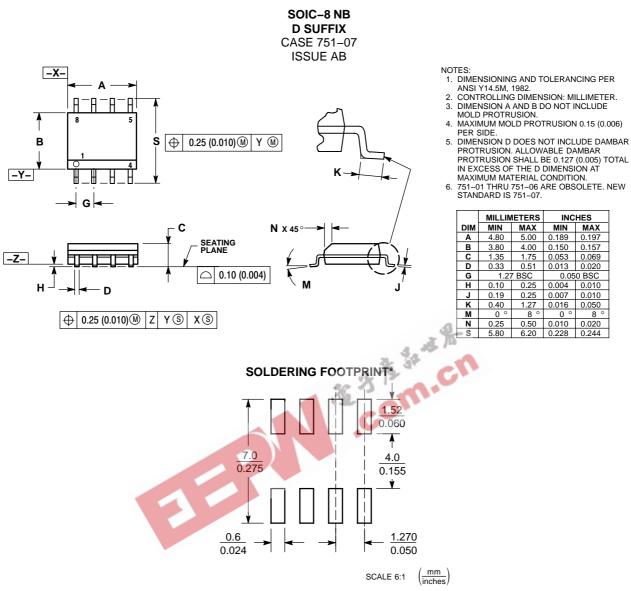

ORDERING INFORMATION

Device	Output Voltage	Operating Temperature Range	Package	Shipping [†]
MC78L18ABP	40.14	$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92	2000 Units/Bag
MC78L18ACP	— 18 V		TO-92	2000 Units/Bag
MC78L18ACPG			TO-92 (Pb-Free)	2000 Units/Bag
MC78L18ACPRA	18 V	$T_J = 0^\circ$ to +125°C	TO-92	2000 Tape & Reel
MC78L18ACPRM			TO-92	2000 Ammo Pack
MC78L18ACPRP			TO-92	2000 Ammo Pack
MC78L24ABP		$T_J = -40^\circ$ to $+125^\circ$ C	TO-92	2000 Units/Bag
MC78L24ACP			TO-92	2000 Units/Bag
MC78L24ACPG			TO-92 (Pb-Free)	2000 Units/Bag
MC78L24ACPRA	24 V	$T_J = 0^\circ$ to +125°C	TO-92	2000 Tape & Reel
MC78L24ACPRP			TO-92	2000 Ammo Pack
MC78L24ACPRPG			TO-92 (Pb-Free)	2000 Ammo Pack


†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MARKING DIAGRAMS


SOIC-8 **D SUFFIX CASE 751**



- xx = 05, 08, 09, 12, or 15
- A = Assembly Location L = Wafer Lot
- L
- Y = Year W = Work Week
- B, C = Temperature Range

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters, including "Typicals" must be validated for each customer applications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any likense under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use less contexprise free asissing out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use of use has contexper regarding the design or manufacture of the part. SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature i

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.