Preferred Device

Sensitive Gate Silicon Controlled Rectifiers Reverse Blocking Thyristors

Designed primarily for half-wave ac control applications, such as motor controls, heating controls, and power supplies; or wherever half-wave, silicon gate-controlled devices are needed.

Features

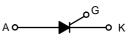
- Sensitive Gate Allows Triggering by Microcontrollers and other Logic Circuits
- Blocking Voltage to 800 Volts
- On-State Current Rating of 8 Amperes RMS at 80°C
- High Surge Current Capability 80 Amperes
- Rugged, Economical TO-220AB Package
- Glass Passivated Junctions for Reliability and Uniformity
- Minimum and Maximum Values of IGT, VGT and IH Specified for Ease of Design
- Immunity to $dv/dt 5 V/\mu sec$ Minimum at $110^{\circ}C$
- Pb–Free Packages are Available*

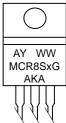
MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) $(T_J = -40 \text{ to } 110^{\circ}\text{C}, \text{ Sine Wave}, $ 50 to 60 Hz, Gate Open)MCR8SD MCR8SN	Vdrm, V _{rrm}	400 600 800	V
On-State RMS Current (180° Conduction Angles; $T_C = 80$ °C)	I _{T(RMS)}	8.0	A
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, T _J = 110°C)	I _{TSM}	80	A
Circuit Fusing Consideration (t = 8.33 ms)	l ² t	26.5	A ² sec
Forward Peak Gate Power (Pulse Width \leq 1.0 μ s, T _C = 80°C)	P _{GM}	5.0	W
Forward Average Gate Power (t = 8.3 ms, $T_C = 80^{\circ}C$)	P _{G(AV)}	0.5	W
Forward Peak Gate Current (Pulse Width \leq 1.0 μ s, T _C = 80°C)	I _{GM}	2.0	A
Operating Junction Temperature Range	TJ	-40 to 110	°C
Storage Temperature Range	T _{stg}	-40 to 150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.


*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


ON Semiconductor®

http://onsemi.com

SCRs 8 AMPERES RMS 400 thru 800 VOLTS

= Year

Y

х

WW = Work Week

TO-220AB CASE 221A-09 STYLE 3

= D,	Μ,	or	Ν
------	----	----	---

- G = Pb-Free Package
- AKA = Diode Polarity

PIN ASSIGNMENT		
1	Cathode	
2	Anode	
3	Gate	
4	Anode	

ORDERING INFORMATION

Device	Package	Shipping
MCR8SD	TO-220AB	50 Units / Rail
MCR8SDG	TO-220AB (Pb-Free)	50 Units / Rail
MCR8SM	TO-220AB	50 Units / Rail
MCR8SMG	TO-220AB (Pb-Free)	50 Units / Rail
MCR8SN	TO-220AB	50 Units / Rail
MCR8SNG	TO-220AB (Pb-Free)	50 Units / Rail

Preferred devices are recommended choices for future use and best overall value.

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case Junction-to-Ambient	$R_{ heta JC} \ R_{ heta JA}$	2.2 62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	ΤL	260	°C

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Peak Repetitive Forward or Reverse Blocking Current (Note 3) (V_D = Rated V_{DRM} and V_{RRM} ; R_{GK} = 1 k Ω)	$T_J = 25^{\circ}C$ $T_J = 110^{\circ}C$	I _{DRM} , I _{RRM}	- -		10 500	μΑ
DN CHARACTERISTICS						
Peak Forward On–State Voltage (Note 2) $(I_{TM} = 16 \text{ A})$		V _{TM}	-	-	1.8	V
Gate Trigger Current (Continuous dc) (Note 4) $(V_D = 12 \text{ V}; \text{ R}_L = 100 \Omega)$		I _{GT}	5.0	25	200	μΑ
Holding Current (Note 4) (V _D = 12 V, Gate Open, Initiating Current = 200 mA)		So I	-	0.5	6.0	mA
Latch Current (Note 4) ($V_D = 12 \text{ V}, I_G = 200 \mu\text{A}$)		in the	-	0.6	8.0	mA
Gate Trigger Voltage (Continuous dc) (Note 4) $(V_D = 12 \text{ V}; \text{ R}_L = 100 \Omega)$	$T_{J} = 25^{\circ}C$ $T_{J} = -40^{\circ}C$	V _{GT}	0.3	0.65 -	1.0 1.5	V
Gate Non–Trigger Voltage $(V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega)$	T _J = 110°C	V _{GD}	0.2	-	-	V
DYNAMIC CHARACTERISTICS						
Critical Rate of Rise of Off–State Voltage ($V_D = 67\% V_{DRM}$, $R_{GK} = 1 K\Omega$, $C_{GK} = 0.1 \mu$ F, $T_J = 110^{\circ}$ C)		dv/dt	5.0	15	-	V/µs
Critical Rate of Rise of On–State Current IPK = 50 A, Pw = 40 μsec, diG/dt = 1 A/μsec, lgt = 10 mA		di/dt	-	-	100	A/μs

Indicates Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%.
R_{GK} = 1000 Ohms included in measurement.
Does not include R_{GK} in measurement.

Voltage Current Characteristic of SCR

			↑ 1
Symbol	Parameter		✓ V _{TM}
V _{DRM}	Peak Repetitive Off State Forward Voltage	on state 2	
DRM	Peak Forward Blocking Current		I _H
V _{RRM}	Peak Repetitive Off State Reverse Voltage	I _{RRM} at V _{RRM}	
RRM	Peak Reverse Blocking Current		
V _{TM}	Peak On State Voltage		+ Voltag
<u>H</u>	Holding Current	Reverse Blocking Region (off state) Reverse Avalanche Region Anode –	I _{DRM} at V _{DRM} Forward Blocking Region (off state) ▼
110		8 (V) V) V) V V V V V V V V V V V V V V V	
100			
95			180°
95		Sin Contraction of the second	90° 120°
90		60	
85	dc		
80		3	
	30° 60° 90° 120° 180°		
75 L	1 2 3 4 5 6 7		3 4 5 6 7
-	I _{T(RMS)} , RMS ON-STATE CURRENT (AMPS)		SE ON-STATE CURRENT (AMPS)
	T(RMS), RWS ON-STATE CORRENT (AMPS)		E ON-STATE CORRENT (AMFS)
I	Figure 1. Typical RMS Current Derating	Figure 2. O	n-State Power Dissipation
		100	
E TYPI	ICAL @ T _J = 25°C	€ 90	
	MAXIMUM @ T _J = 110°C -	<u>∃</u> 80	
	MAXIMON @ 1j = 110-C -	Z 70	
10	MAXIMUM @ T _J = 25°C		
		μ ⁵⁰	
		<u>9</u> 40	
`≡∎		<u><u></u> 30</u>	
		GATE TRIGGER CURRENT (µ Å) 0 00 02 02 09 00 0 00 00 00 0 00 00 0 00 00 0 00 00 0	
		v 10	
· · · ·		0	
).1	1.0 1.5 2.0 2.5 3.0 3	.5 -40 -25 -10 5	20 35 50 65 80 95
0.5			
0.5	ISTANTANEOUS ON-STATE VOLTAGE (VOLTS)	T _J , JUNC	CTION TEMPERATURE (°C)

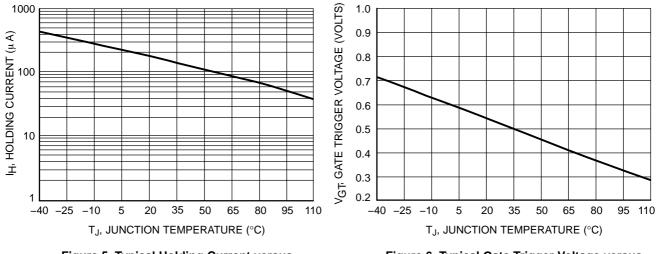


Figure 5. Typical Holding Current versus Junction Temperature

Figure 6. Typical Gate Trigger Voltage versus Junction Temperature

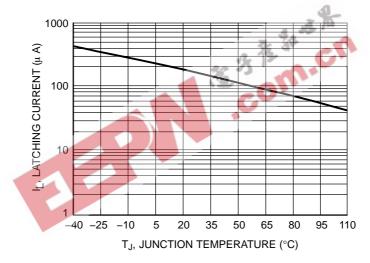
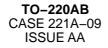
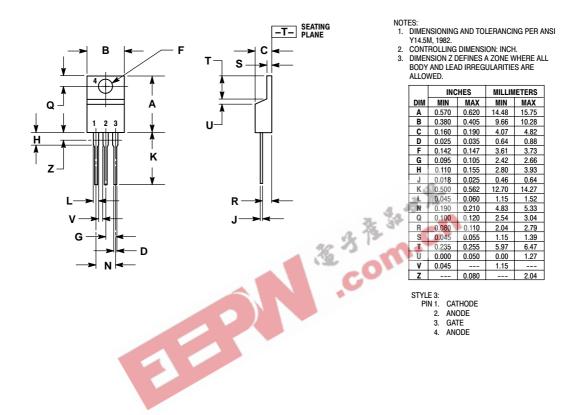




Figure 7. Typical Latching Current versus Junction Temperature

PACKAGE DIMENSIONS

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use persons, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized sopyies that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.