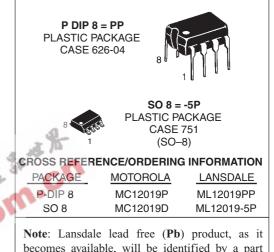
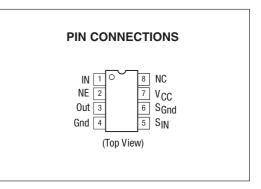
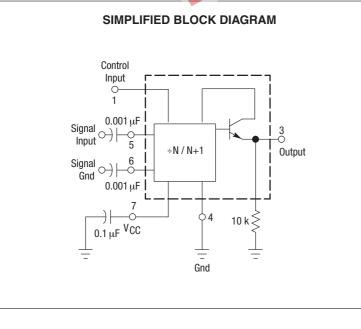


ML12019 Dual Modulus Prescaler


MECL PLL COMPONENTS ÷20/21 DUAL MODULUS SEMICONDUCTOR TECHNICAL DATA

32 3


Legacy Device: Motorola MC12019


The ML12019 is a divide by 20 and 21 dual modulus prescaler. It will devide by 20 when the modulus control input is HIGH and divide by 21 when the modulus control input is LOW.

- 225 MHz Toggle Frequency
- Low–Power 7.5 mA Maximum at 5.5 V
- Control Input is Compatible with Standard Motorola or Lansdale CMOS Synthesizers
- Emitter Follower Output
- Operating Temperature Range $T_A = -40$ to $85^{\circ}C$

becomes available, will be identified by a part number prefix change from ML to MLE.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage, Pin 7	VCC	8.0	Vdc
Operating Temperature Range	TA	-40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +175	°C

ELECTRICAL CHARACTERISTICS (V_{CC} = 4.5 to 5.5 V; T_A = -40 to 85°C), unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
Toggle Frequency (Sine Wave Input)	^f max ^f min	225 -		_ 20	MHz
Supply Current	ICC	-	-	7.5	mA
Control Input HIGH (+20)	VIH	2.0	-	-	V
Control Input LOW (÷21)	VIL	-	-	0.8	V
Output Swing Voltage (10 k Ω to ground)	Vout	600	-	1200	mVpp
Input Voltage Sensitivity 20 MHz to 225 MHz	V _{in}	200	_	800	mV _{PP}
PLL Response Time (Notes 1 and 2)	TPLL	C	-	t _{out} -70	ns
 NOTES: 1. tpLL = the period of time the PLL has from the prescaler rising of (50%) to ensure proper modulus selection. 2. t_{out} = period of output waveform. 	utput tranistion (0%) to the m	nodulus contr	ol input edge	transition

Figure 1. Generic block diagram showing prescaler connection to PLL device

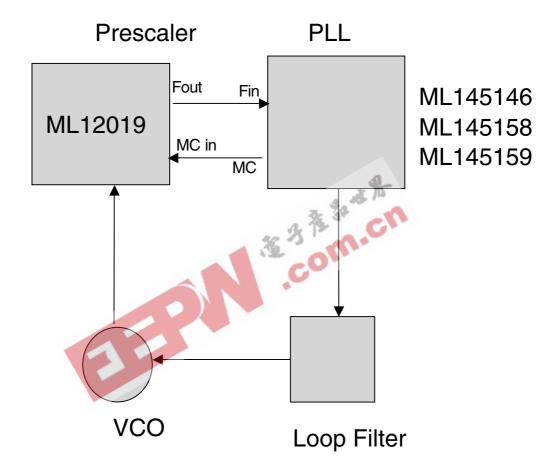
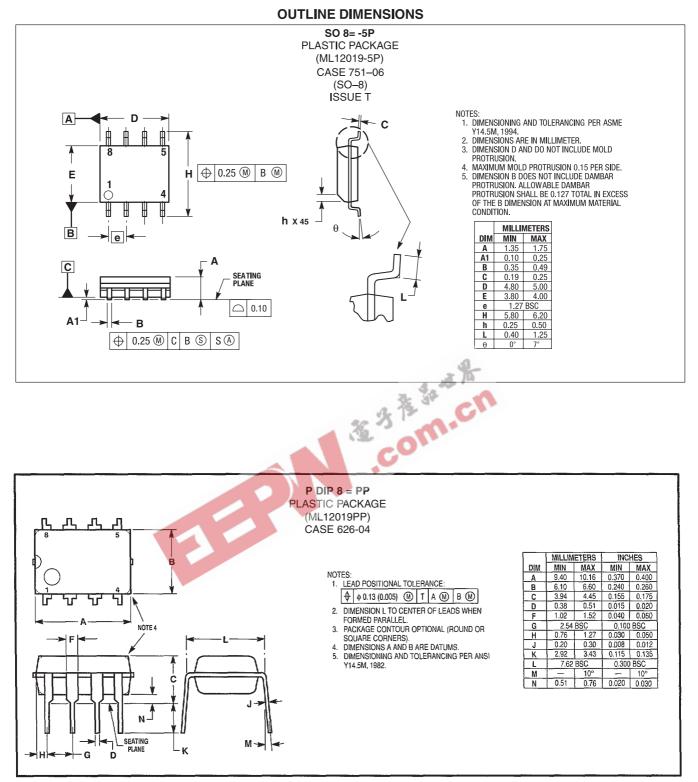



Figure 1 shows a generic block diagram for connecting a prescaler to a PLL device that supports dual modulus control. Application note AN535 decribes using a two-modulus prescaler technique.By using prescaler higher frequencies can be achieve than by a single CMOS PLL device.

Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. "Typical" parameters which may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.