SWITCHMODE™ Series NPN Silicon Power Transistor These devices are designed for high-voltage, high-speed power switching inductive circuits where fall time is critical. They are particularly suited for 115 and 220 V SWITCHMODE applications such as Switching Regulators, Inverters, Motor Controls, Solenoid/Relay drivers and Deflection circuits. #### **Features** - Reverse Biased SOA with Inductive Loads @ $T_C = 100$ °C - Inductive Switching Matrix 0.5 to 1.5 A, 25 and 100°C t_c @ 1 A, 100°C is 290 ns (Typ) - 700 V Blocking Capability - SOA and Switching Applications Information - Pb-Free Package is Available* #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|-----------------------------------|----------------|------------| | Collector–Emitter Voltage | V _{CEO(sus)} | 400 | Vdc | | Collector-Emitter Voltage | V_{CEV} | 700 | Vdc | | Emitter Base Voltage | V _{EBO} | 9 | Vdc | | Collector Current - Continuous - Peak (Note 1) | I _C | 1.5 | Adc | | Base Current – Continuous
– Peak (Note 1) | I _B | 0.75
1.5 | Adc | | Emitter Current – Continuous – Peak (Note 1) | I _E | 2.25
4.5 | Adc | | Total Power Dissipation @ T _A = 25°C
Derate above 25°C | P _D | 1.4
11.2 | W
mW/°C | | Total Power Dissipation @ T _C = 25°C
Derate above 25°C | P _D | 40
320 | W
mW/°C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -65 to
+150 | °C | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |---|-----------------|------|------| | Thermal Resistance, Junction-to-Case | $R_{\theta JC}$ | 3.12 | °C/W | | Thermal Resistance, Junction-to-Ambient | $R_{\theta JA}$ | 89 | °C/W | | Maximum Load Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds | T_L | 275 | °C | Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. 1. Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%. #### ON Semiconductor® http://onsemi.com 1.5 AMPERES NPN SILICON POWER TRANSISTORS 300 AND 400 VOLTS 40 WATTS **MARKING DIAGRAM** TO-225 CASE 77 STYLE 3 Y = Year WW = Work Week JE13003 = Device Code G = Pb-Free Package #### **ORDERING INFORMATION** | Device | Package | Shipping | |-----------|---------------------|---------------| | MJE13003 | TO-225 | 500 Units/Box | | MJE13003G | TO-225
(Pb-Free) | 500 Units/Box | ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # **ELECTRICAL CHARACTERISTICS** ($T_C = 25^{\circ}C$ unless otherwise noted) | | Symbol | Min | Тур | Max | Unit | | |--|--|------------------|---------------|--------------------|----------|------| | OFF CHARACTERISTICS (Note 2) | | | | | | | | Collector-Emitter Sustain | V _{CEO(sus)} | 400 | - | _ | Vdc | | | Collector Cutoff Current (V _{CEV} = Rated Value, (V _{CEV} = Rated Value, | I _{CEV} | _
_ | | 1
5 | mAdc | | | Emitter Cutoff Current (VE | _{EB} = 9 Vdc, I _C = 0) | I _{EBO} | - | _ | 1 | mAdc | | SECOND BREAKDOWN | | | | | | | | Second Breakdown Colle | ctor Current with bass forward biased | I _{S/b} | See Figure 11 | | | _ | | Clamped Inductive SOA | vith base reverse biased | RBSOA | See Figure 12 | | | _ | | ON CHARACTERISTICS | (Note 2) | | | | | _ | | DC Current Gain ($I_C = 0.5$ Adc, $V_{CE} = 2$ ($I_C = 1$ Adc, $V_{CE} = 2$ V | | h _{FE} | 8
5 | _
_ | 40
25 | - | | | V _{CE(sat)} | -
-
-
- | -
-
- | 0.5
1
3
1 | Vdc | | | Base-Emitter Saturation ($I_C = 0.5$ Adc, $I_B = 0.1$ ($I_C = 1$ Adc, $I_B = 0.25$ ($I_C = 1$ Adc, $I_B = 0.25$ | V _{BE(sat)} | <u>.</u> | -
-
- | 1
1.2
1.1 | Vdc | | | DYNAMIC CHARACTER | ISTICS | ,0 | | | • | | | Current-Gain - Bandwidth | Product (I _C = 100 mAdc, V _{CE} = 10 Vdc, f = 1 MHz) | f _T | 4 | 10 | _ | MHz | | Output Capacitance (V _{CB} | = 10 Vdc, I _E = 0, f = 0.1 MHz) | C _{ob} | ı | 21 | - | pF | | SWITCHING CHARACTE | SWITCHING CHARACTERISTICS | | | | | | | Resistive Load (Table 1) | | | | | | | | Delay Time | | t _d | ı | 0.05 | 0.1 | μs | | Rise Time | $(V_{CC} = 125 \text{ Vdc}, I_C = 1 \text{ A}, I_{B1} = I_{B2} = 0.2 \text{ A}, t_p = 25 \text{ µs},$ | t _r | 1 | 0.5 | 1 | μs | | Storage Time | Duty Cycle ≤ 1%) | t _s | - | 2 | 4 | μs | | Fall Time | t _f | - | 0.4 | 0.7 | μs | | | Inductive Load, Clamped (Table 1, Figure 13) | | | | | | | | Storage Time | (I | t _{sv} | 1 | 1.7 | 4 | μs | | Crossover Time | (I _C = 1 A, V _{clamp} = 300 Vdc,
 I _{B1} = 0.2 A, V _{BE(off)} = 5 Vdc, T _C = 100°C) | t _c | - | 0.29 | 0.75 | μs | | Fall Time | 21(0.1) | t _{fi} | - | 0.15 | _ | μs | ^{2.} Pulse Test: PW = 300 μ s, Duty Cycle \leq 2%. Figure 1. DC Current Gain Figure 2. Collector Saturation Region Figure 3. Base-Emitter Voltage Figure 4. Collector-Emitter Saturation Region Figure 5. Collector Cutoff Region Figure 6. Capacitance **Table 1. Test Conditions for Dynamic Performance** **Table 2. Typical Inductive Switching Performance** | I _C | T _C | t _{sv} | t _{rv} | t _{fi} | t _{ti} | t _c | |----------------|----------------|-----------------|-----------------|-----------------|-----------------|----------------| | | °C | μs | μs | μs | μs | μs | | 0.5 | 25 | 1.3 | 0.23 | 0.30 | 0.35 | 0.30 | | | 100 | 1.6 | 0.26 | 0.30 | 0.40 | 0.36 | | 1 | 25 | 1.5 | 0.10 | 0.14 | 0.05 | 0.16 | | | 100 | 1.7 | 0.13 | 0.26 | 0.06 | 0.29 | | 1.5 | 25 | 1.8 | 0.07 | 0.10 | 0.05 | 0.16 | | | 100 | 3 | 0.08 | 0.22 | 0.08 | 0.28 | Figure 7. Inductive Switching Measurements NOTE: All Data Recorded in the Inductive Switching Circuit in Table 1 #### **SWITCHING TIMES NOTE** In resistive switching circuits, rise, fall, and storage times have been defined and apply to both current and voltage waveforms since they are in phase. However, for inductive loads which are common to SWITCHMODE power supplies and hammer drivers, current and voltage waveforms are not in phase. Therefore, separate measurements must be made on each waveform to determine the total switching time. For this reason, the following new terms have been defined. t_{sv} = Voltage Storage Time, 90% I_{B1} to 10% V_{clamp} t_{rv} = Voltage Rise Time, 10–90% V_{clamp} t_{fi} = Current Fall Time, 90–10% I_C t_{ti} = Current Tail, 10–2% I_{C} t_c = Crossover Time, 10% V_{clamp} to 10% I_C An enlarged portion of the inductive switching waveforms is shown in Figure 7 to aid in the visual identity of these terms. For the designer, there is minimal switching loss during storage time and the predominant switching power losses occur during the crossover interval and can be obtained using the standard equation from AN–222: $$P_{SWT} = 1/2 V_{CC}I_{C}(t_{c})f$$ In general, $t_{rv} + t_{fi} \approx t_c$. However, at lower test currents this relationship may not be valid. As is common with most switching transistors, resistive switching is specified at 25°C and has become a benchmark for designers. However, for designers of high frequency converter circuits, the user oriented specifications which make this a "SWITCHMODE" transistor are the inductive switching speeds (t_c and t_{sv}) which are guaranteed at 100°C. #### **RESISTIVE SWITCHING PERFORMANCE** Figure 8. Turn-On Time Figure 9. Turn-Off Time Figure 10. Thermal Response The Safe Operating Area figures shown in Figures 11 and 12 are specified ratings for these devices under the test conditions shown. Figure 11. Active Region Safe Operating Area Figure 12. Reverse Bias Safe Operating Area #### SAFE OPERATING AREA INFORMATION #### **FORWARD BIAS** There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 11 is based on $T_C = 25\,^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25\,^{\circ}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 11 may be found at any case temperature by using the appropriate curve on Figure 13. $T_{J(pk)}$ may be calculated from the data in Figure 10. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. #### **REVERSE BIAS** For inductive loads, high voltage and high current must be sustained simultaneously during turn—off, in most cases, with the base to emitter junction reverse biased. Under these conditions the collector voltage must be held to a safe level at or below a specific value of collector current. This can be accomplished by several means such as active clamping, RC snubbing, load line shaping, etc. The safe level for these devices is specified as Reverse Bias Safe Operating Area and represents the voltage—current conditions during reverse biased turn—off. This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode. Figure 12 gives RBSOA characteristics. Figure 13. Forward Bias Power Derating #### PACKAGE DIMENSIONS TO-225 CASE 77-09 **ISSUE Z** - 1. DIMENSIONING AND TOLERANCING PER ANSI - Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. - 077-01 THRU -08 OBSOLETE, NEW STANDARD 077-09. | | INCHES | | MILLIMETERS | | |-----|--------|-------|-------------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.425 | 0.435 | 10.80 | 11.04 | | В | 0.295 | 0.305 | 7.50 | 7.74 | | С | 0.095 | 0.105 | 2.42 | 2.66 | | D | 0.020 | 0.026 | 0.51 | 0.66 | | F | 0.115 | 0.130 | 2.93 | 3.30 | | G | 0.094 | BSC | 2.39 BSC | | | Н | 0.050 | 0.095 | 1.27 | 2.41 | | J | 0.015 | 0.025 | 0.39 | 0.63 | | K | 0.575 | 0.655 | 14.61 | 16.63 | | M | 5° | TYP | 5° | TYP | | Q | 0.148 | 0.158 | 3.76 | 4.01 | | R | 0.045 | 0.065 | 1.15 | 1.65 | | S | 0.025 | 0.035 | 0.64 | 0.88 | | U | 0.145 | 0.155 | 3.69 | 3.93 | | V | 0.040 | | 1.02 | | - BASE COLLECTOR SWITCHMODE is a trademark of Semiconductor Components Industries, LLC. ON Semiconductor and up are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice ON Semiconductor and war registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized large steps SCILLC is an Equal to the desiring or manufacture of the party t associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA **Phone**: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative