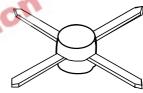


Cascadable Silicon Bipolar MMIC Amplifier

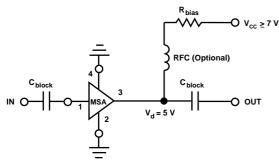
Technical Data

MSA-0304

Features


- Cascadable 50 Ω Gain Block
- **3 dB Bandwidth:** DC to 1.6 GHz
- 11.0 dB Typical Gain at 1.0 GHz
- 10.0 dBm Typical $P_{1 dB}$ at 1.0 GHz
- Unconditionally Stable (k>1)
- Low Cost Plastic Package

Description


The MSA-0304 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a low cost plastic package. This MMIC is designed for use as a general purpose 50Ω gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using HP's 10 GHz fT, 25 GHz f MAX, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

04A Plastic Package

Typical Biasing Configuration

MSA-0304 Absolute Maximum Ratings

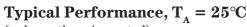
Parameter	Absolute Maximum ^[1]				
Device Current	70 mA				
Power Dissipation ^[2,3]	400 mW				
RF Input Power	+13dBm				
Junction Temperature	150°C				
Storage Temperature	−65 to 150°C				

Thermal Resistance^[2,4]: $\theta_{jc} = 100^{\circ}C/W$

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 10 mW/°C for $T_C > 110$ °C.
- 4. See MEASUREMENTS section "Thermal Resistance" for more information.

Symbol	Parameters and Test Conditions: I	Units	Min.	Тур.	Max.	
GP	Power Gain $(S_{21} ^2)$	f = 0.1 GHz	dB		12.5	
		f = 0.5 GHz		10.0	12.0	
		f = 1.0 GHz			11.0	
ΔG_P	Gain Flatness	f = 0.1 to 1.3 GHz	dB		± 1.0	
f _{3 dB}	3 dB Bandwidth		GHz		1.6	
VSWR	Input VSWR	f = 0.1 to 3.0 GHz			1.3:1	
VOVIN	Output VSWR	f = 0.1 to 3.0 GHz			1.6:1	
NF	50 Ω Noise Figure	f = 1.0 GHz	dB		6.0	
P _{1 dB}	Output Power at 1 dB Gain Compression	$f = 1.0 \mathrm{GHz}$	dBm		10.0	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		23.0	
tD	Group Delay	f = 1.0 GHz	psec		150	
Vd	Device Voltage		V	4.5	5.0	5.5
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0	


Electrical Specifications^[1], $T_A = 25^{\circ}C$

Note:

1. The recommended operating current range for this device is 20 to 50 mA. Typical performance as a function of current is on the following page.

					•		л	u		
Freq.	S ₁₁		S_{21}			\mathbf{S}_{12}			\mathbf{S}_{22}	
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.10	173	12.5	4.24	173	-18.5	.120	3	.12	-13
0.2	.10	162	12.5	4.21	167	-18.2	.123	4	.12	-24
0.4	.09	142	12.2	4.08	153	-18.0	.125	7	.13	-46
0.6	.08	127	11.9	3.93	141	-17.8	.128	10	.15	-64
0.8	.07	110	11.5	3.76	130	-17.3	.136	14	.16	-78
1.0	.06	92	11.1	3.58	118	-16.8	.144	16	.17	-91
1.5	.03	58	10.0	3.15	93	-15.5	.169	19	.19	-117
2.0	.03	175	8.8	2.76	71	-14.1	.197	18	.20	-139
2.5	.05	163	7.8	2.46	55	-13.2	.218	18	.21	-158
3.0	.12	148	6.8	2.20	38	-12.2	.246	15	.22	-174
3.5	.19	129	5.9	1.98	20	-11.2	.275	7	.24	171
4.0	.26	110	5.0	1.77	3	-10.6	.296	1	.26	158
5.0	.44	77	3.0	1.41	-28	-9.9	.319	-15	.29	128
6.0	.63	52	0.4	1.05	-56	-10.2 🦪	.310	-31	.37	94
model for t	this device i	s available	in the DEV	/ICE MODI	ELS section	1				
					80	31				
		-								
	Performa		_= 25℃	;		~O'				
unless oth	erwise not	ed)								
14				60			- 1	4		

MSA-0304 Typical Scattering Parameters ($Z_0 = 50 \Omega$, $T_A = 25^{\circ}C$, $I_d = 35 mA$)

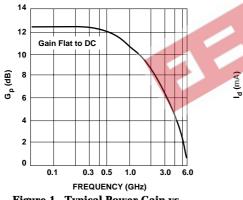


Figure 1. Typical Power Gain vs. Frequency, $T_A = 25^{\circ}C$, $I_d = 35$ mA.

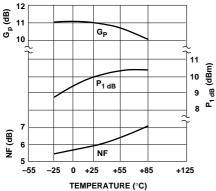


Figure 4. Output Power at 1 dB Gain Compression, NF and Power Gain vs. Case Temperature, f = 1.0 GHz, I_d=35mA.

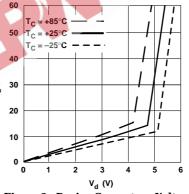


Figure 2. Device Current vs. Voltage.

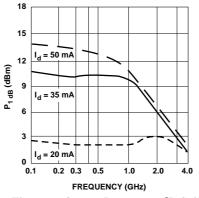
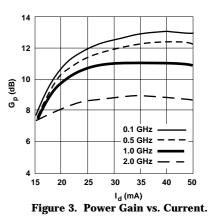
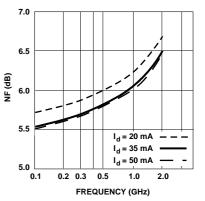
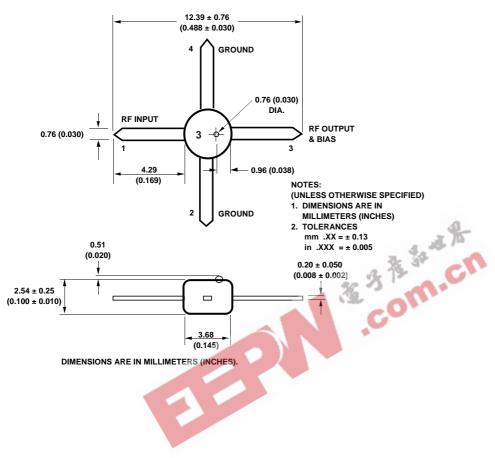





Figure 5. Output Power at 1 dB Gain **Compression vs. Frequency.**

04A Plastic Package Dimensions