

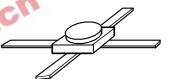
Cascadable Silicon Bipolar MMIC Amplifier

Technical Data

MSA-0270

Features

- Cascadable 50 Ω Gain Block
- 3 dB Bandwidth: DC to 2.8 GHz
- 12.0 dB Typical Gain at 1.0 GHz
- Unconditionally Stable (k>1)
- Hermetic Gold-ceramic Microstrip Package


Description

The MSA-0270 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a hermetic, high reliability package. This

MMIC is designed for use as a general purpose $50~\Omega$ gain block. Typical applications include narrow and broad band IF and RF amplifiers in industrial and military applications.

The MSA-series is fabricated using HP's 10 GHz ft, 25 GHz f MAX, silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.

70 mil Package

Typical Biasing Configuration

RFC (Optional)

$$C_{block}$$
 $V_{cc} \ge 7 V$
 $V_{cc} \ge 7 V$
 $V_{cc} \ge 7 V$
 $V_{cc} \ge 7 V$
 $V_{cc} \ge 7 V$

5965-9698E 6-278

MSA-0270 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]			
Device Current	60 mA			
Power Dissipation ^[2,3]	325 mW			
RF Input Power	+13dBm			
Junction Temperature	200°C			
Storage Temperature	−65 to 200°C			

Thermal Resistance $[2,4]$:					
$\theta_{\rm jc} = 120^{\circ} \text{C/W}$					

Notes:

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 8.3 mW/°C for $T_C > 161$ °C.
- $4. \ \,$ The small spot size of this technique results in a higher, though more accurate determination of $\theta_{\rm jc}$ than do alternate methods. See MEASURE-

accurate determination of θ_{jc} than do alternate methods. See MEASURE-MENTS section "Thermal Resistance" for more information.									
MENTS section "Thermal Resistance" for more information. Electrical Specifications ^[1] , $T_A = 25$ °C									
Symbol	Parameters and Test Conditions: I	Units	Min.	Тур.	Max.				
GP	Power Gain ($ S_{21} ^2$)	f = 0.1 GHz	dB	11.5	12.5	13.5			
ΔG_{P}	Gain Flatness	f = 0.1 to 1.8 GHz	dB		± 0.6	± 1.0			
f_{3dB}	3 dB Bandwidth		GHz		2.8				
VSWR -	Input VSWR	f = 0.1 to 3.0 GHz			1.4:1				
	Output VSWR	f = 0.1 to 3.0 GHz			1.4:1				
NF	50Ω Noise Figure	f = 1.0 GHz	dB		6.5				
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		4.5				
IP3	Third Order Intercept Point	f = 1.0 GHz	dBm		17.0				
t_{D}	Group Delay	f = 1.0 GHz	psec		125				
V_{d}	Device Voltage		V	4.5	5.0	5.5			
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-8.0				

Note:

^{1.} The recommended operating current range for this device is 18 to 40 mA. Typical performance as a function of current is on the following page.

MSA-0270 Typical Scattering Parameters ($\mathbf{Z}_0 = \mathbf{50}~\Omega,\, \mathbf{T}_{\mathrm{A}} = \mathbf{25}\,^{\circ}\!\mathrm{C},\, \mathbf{I}_{\mathrm{d}} = \mathbf{25}~\mathrm{mA}$)

Freq.	S ₁₁		\mathbf{S}_{21}		\mathbf{S}_{12}			\mathbf{S}_{22}		
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang
0.1	.11	179	12.6	4.26	176	-18.4	.120	1	.12	-8
0.2	.11	174	12.6	4.24	171	-18.6	.117	3	.12	-15
0.4	.10	169	12.5	4.21	162	-18.4	.120	4	.13	-30
0.6	.09	165	12.4	4.17	154	-18.2	.123	5	.14	-4 4
0.8	.08	161	12.3	4.11	146	-18.2	.123	7	.14	- 55
1.0	.06	161	12.2	4.05	137	-18.0	.126	9	.15	- 64
1.5	.02	-150	11.7	3.85	116	-17.2	.138	11	.16	-8 4
2.0	.06	-110	11.1	3.57	96	-16.3	.153	11	.16	- 102
2.5	.11	- 112	10.3	3.27	82	-15.7	.165	14	.14	-106
3.0	.17	-134	9.3	2.92	65	-15.2	.174	12	.13	- 114
3.5	.22	-147	8.2	2.56	48	-14.7	.185	6	.15	-111
4.0	.26	156	7.0	2.23	33	-14.3	.192	3	.19	-107
5.0	.28	179	4.7	1.72	8	-14.0	.199	- 6	.27	-107
6.0	.30	143	3.0	1.41	- 13	-13.8	.204	-14	.29	- 119
A model for t	this device	is available	in the DEV	ICE MODE	LS section	L				
					20	7				
Typical Performance, $T_A = 25^{\circ}C$										
(unless otherwise noted)										
(unless otherwise noted)										
1.4				40						

Typical Performance, $T_A = 25$ °C

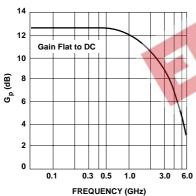


Figure 1. Typical Power Gain vs. Frequency, $T_A = 25^{\circ}C$, $I_d = 25$ mA.

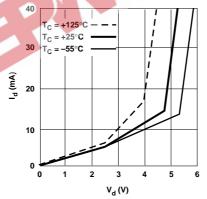


Figure 2. Device Current vs. Voltage.

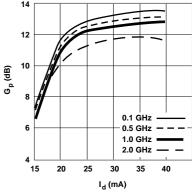


Figure 3. Power Gain vs. Current.

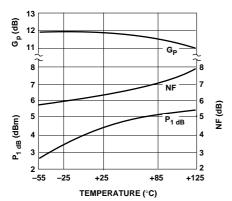


Figure 4. Output Power at 1 dB Gain Compression, NF and Power Gain vs. **Mounting Surface Temperature,** $f = 1.0 \text{ GHz}, I_d = 25 \text{ mA}.$

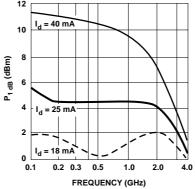


Figure 5. Output Power at 1 dB Gain **Compression vs. Frequency.**

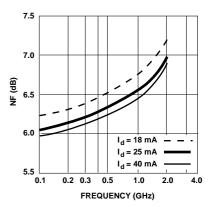
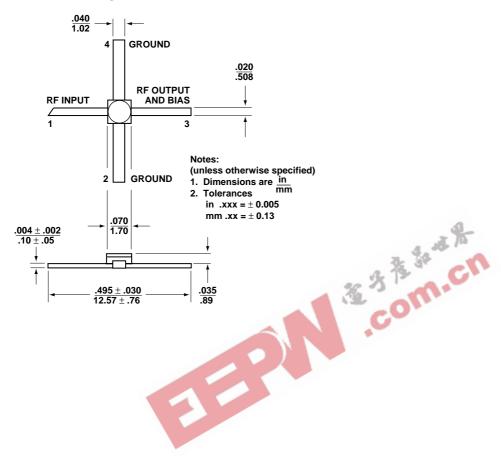



Figure 6. Noise Figure vs. Frequency.

70 mil Package Dimensions

