

GaAlAs Hermetic Infrared Emitting Diodes Type OP234W

Features

- · Very high speed
- Enhanced temperature range
- Wide irradiance pattern
- Mechanically and spectrally matched to the OP800WSL and OP830SL series devices
- Significantly higher power output than GaAs at equivalent drive currents
- TO-46 hermetically sealed package
- Case is electrically connected to the cathode

Description

The OP234W device is an 850 nm gallium aluminum arsenide infrared emitting diodes mounted in hermetically sealed packages. The broad irradiance pattern provides relatively even illumination over a large area.

Absolute Maximum Ratings (TA = 25° C unless otherwise noted)

Reverse Voltage
Continuous Forward Current
Peak Forward Current (2 μs pulse width, 0.1% duty cycle)
Storage Temperature Range65° C to +150° C
Operating Temperature Range65° C to +125° C
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 sec. with soldering
iron]
Power Dissipation
Notes:

- (1) RMA flux is recommended. Duration can be extended to 10 seconds max. when flow soldering.
- (2) Derate linearly 2.0 mW/° C above 25° C.
 (3) E_{e(APT)} is a measurement of the average radiant intensity emitted by the IRED within a cone
- formed from the IRED chip to an aperture. The aperture of diameter 0.250" is located a distance of 0.466" from the flange (measurement plane) to the aperture plane (parallel to the measurement plane) along the optical and mechanical axis. The cone formed is a 30° cone. The radiant intensity is not necessarily uniform within the measured area.
- (4) Measurement made with $100\mu s$ pulse measured at the trailing edge of the pulse with a duty cycle of 0.1% and an I_F = 100 mA.

Type OP234W

Electrical Characteristics (T_A = 25° C unless otherwise noted)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITIONS
E _{e(APT)}	Apertured Radiant Incidence	5.0			mW/cm ²	$I_F = 100 \text{ mA}^{(3)(4)}$
Po	Power Output		17		mW	I _F = 100 mA
VF	Forward Voltage			2.0	V	$I_F = 100 \text{ mA}^{(4)}$
I _R	Reverse Current			100	μΑ	V _R = 2.0 V
λр	Wavelength at Peak Emission		850		nm	I _F = 10 mA
В	Spectral Bandwidth Half Power Points		50		nm	I _F = 10 mA
$\Delta\lambda_P/\Delta T$	Spectral Shift with Temperature		+0.30		nm/°C	I _F = Constant
θнР	Emission Angle at Half Power Points		60		Deg.	I _F = 100 mA
t _r	Rise Time		15		ns	I _{F(PK)} = 100 mA, PW = 10 μs, D.C. = 10%
t _f	Fall Time		10		ns	

