a **Ultraprecision Operational Amplifier**

OP177

NC

V÷

NC.

OUT

NC.

GENERAL DESCRIPTION

The OP177 features the highest precision performance of any op amp currently available. Offset voltage of the OP177 is only 10 μ V max at room temperature and 20 μ V max over the full military temperature range of -55°C to +125°C. The ultralow V_{OS} of the OP177, combines with its exceptional offset voltage drift (TCV_{OS}) of 0.1 μ V/°C max, to eliminate the need for external V_{OS} adjustment and increases system accuracy over temperature.

The OP177's open-loop gain of 12 V/ μ V is maintained over the full ± 10 V output range. CMRR of 130 dB min, PSRR of 120 dB min, and maximum supply current of 2 mA are just a few examples of the excellent performance of this operational amplifier. The OP177's combination of outstanding specifications insure accurate performance in high closed-loop gain applications.

This low noise bipolar input op amp is also a cost effective alternative to chopper-stabilized amplifiers. The OP177 provides chopper-type performance without the usual problems of high noise, low frequency chopper spikes, large physical size, limited common-mode input voltage range, and bulky external storage capacitors.

NC = NO CONNECT

The OP177 is offered in both the -55° C to $+125^{\circ}$ C military, and the –40°C to +85°C extended industrial temperature ranges. This product is available in 8-pin ceramic and epoxy DIPs, as well as the space saving 8-pin Small-Outline (SO) and the Leadless Chip Carrier (LCC) packages.

Figure 1. Simplified Schematic

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

REV. B

© Analog Devices, Inc., 1995

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 Fax: 617/326-8703

OP177–SPECIFICATIONS ELECTRICAL CHARACTERISTICS ($@$ $V_s = \pm 15$ V, $T_A = +25^\circ$ C, unless otherwise noted)

			OP177A			OP177B			
Parameter	Symbol	Conditions	Min	Typ	Max	Min	Typ	Max	Units
Input Offset Voltage	V_{OS}			4	10		10	25	μV
Long-Term Input Offset Voltage Stability	$\Delta V_{OS}/Time$	(Note 1)		0.2			0.2		uV/Mo
Input Offset Current	I_{OS}			0.3	1.0		0.3	1.5	nA
Input Bias Current	$I_{\rm B}$		-0.2		1.5	-0.2		2.0	nA
Input Noise Voltage	e_n	$f_0 = 1$ Hz to 100 Hz ²		118	150		118	150	nV rms
Input Noise Current	1 _n	$f_0 = 1$ Hz to 100 Hz ²		3	8		3	8	pA rms
Input Resistance Differential-Mode	R_{IN}	(Note 3)	26	45		26	45		$M\Omega$
Input Resistance Common-Mode	R_{INCM}			200			200		$G\Omega$
Input Voltage Range	IVR	(Note 4)	±13	±14		±13	±14		V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = \pm 13$ V	130	140		130	140		dB
Power Supply Rejection Ratio	PSRR	$V_s = \pm 3$ V to ± 18 V	120	125		115	125		dB
Large Signal Voltage Gain	A_{VQ}	$R_L \ge 2 k\Omega$, $V_O = \pm 10 V^5$	5000	12000		5000	12000		V/mV
Output Voltage Swing	V_{O}	$R_I \geq 10 k\Omega$	±13.5	±14.0		±13.5	±14.0		V
		$R_L \geq 2$ kΩ	±12.5	±13.0		±12.5	±13.0		V
		$R_{L} \geq 1$ kΩ	± 12.0	±12.5		±12.0	±12.5		V
Slew Rate	SR	$R_L \geq 2 k\Omega^2$	0.1	0.3		0.1	0.3		$V/\mu s$
Closed-Loop Bandwidth	BW	$A_{VCL} = +1^2$	0.4	0.6		0.4	0.6		MHz
Open-Loop Output Resistance	R_{O}			60			60		Ω
Power Consumption	P_D	$V_s = \pm 15$ V, No Load		50	60		50	60	mW
		$V_s = \pm 3$ V, No Load		3.5	4.5		3.5	4.5	mW
Supply Current	I_{SY}	$V_s = \pm 15$ V, No Load			2.0		1.6	2.0	mA
Offset Adjustment Range		$Rp = 20 k\Omega$		土			±3		mV
NOTES									

NOTES

¹Long-Term Input Offset Voltage Stability refers to the averaged trend line of V_{OS} vs. Time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically less than 2.0 µV.

²Sample tested.

³Guaranteed by design. 4 Guaranteed by CMRR test condition.

⁵To insure high open-loop gain throughout the ± 10 V output range, A_{VO} is tested at -10 V \leq V_O \leq 0 V, 0 V \leq V_O \leq +10 V, and -10 V \leq V_O \leq +10 V.

Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS (@ $V_s = ±15$ V, -55° C ≤ T_A ≤ +125°C, unless otherwise noted)

NOTES

 ${}^{1}TCV_{OS}$ is 100% tested.

²Guaranteed by endpoint limits.

³Guaranteed by CMRR test condition.

⁴To insure high open-loop gain throughout the ±10 V output range, A_{VO} is tested at -10 V \leq V_O \leq 0 V, 0 V \leq V_O \leq +10 V, and -10 V \leq V_O \leq +10 V.

Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS $\text{(@ } V_s = \pm 15 \text{ V}, T_A = +25^{\circ}C, \text{ unless otherwise noted)}$

NOTES

¹Long-Term Input Offset Voltage Stability refers to the averaged trend line of V_{OS} vs. time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in V_{OS} during the first 30 operating days are typically less than 2.0 μ V.
²Sample tested.

³Guaranteed by design.

⁴Guaranteed by CMRR test condition.

⁵To insure high open-loop gain throughout the ±10 V output range, A_{VO} is tested at -10 V \leq V_O \leq 0 V, 0 V \leq V_O \leq +10 V, and -10 V \leq V_O \leq +10 V.

Specifications subject to change without notice.

OP177–SPECIFICATIONS ELECTRICAL CHARACTERISTICS ($@$ $V_s = \pm 15$ $V, -40^\circ C \le T_A \le -85^\circ C$, unless otherwise noted)

NOTES

 1 OP177E: TCV_{OS} is 100% tested.

²Guaranteed by endpoint limits.

³Guaranteed by CMRR test condition.

⁴To insure high open-loop gain throughout the ±10 V output range, A_{VO} is tested at -10 V \leq V_O \leq V, O V \leq V_O \leq +10 V, and -10 V \leq V_O \leq +10 V.

Specifications subject to change without notice.

Figure 2. Typical Offset Voltage Test Circuit

Figure 3. Optional Offset Nulling Circuit

PINOUTS SHOWN FOR P AND Z PACKAGES

Figure 4. Burn-In Circuit

ABSOLUTE MAXIMUM RATINGS

ORDERING GUIDE

NOTES

¹For supply voltages less than ± 22 V, the absolute maximum input voltage is equal to the supply voltage.

 ${}^{2}\theta_{JA}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for cerdip, P-DIP, and LCC packages; θ_{JA} is specified for device soldered to printed circuit board for SO package.

Figure 5. Gain Linearity (Input Voltage vs. Output Voltage)

Figure 8. Offset Voltage Change Due to Thermal Shock

Figure 11. Input Bias Current vs. Temperature

TOTAL SUPPLY VOLTAGE, V+ TO V- (VOLTS) *Figure 6. Power Consumption vs. Power Supply*

Figure 9. Open-Loop Gain vs. Temperature

Figure 12. Input Offset Current vs. Temperature

Figure 7. Warm-Up V_{OS} Drift *(Normalized) Z Package*

Figure 10. Open-Loop Gain vs. Power Supply Voltage

Figure 13. Closed-Loop Response for Various Gain Configurations

OP177–Typical Performance Characteristics

Figure 20. Maximum Output Voltage vs. Load Resistance

20

25 $-$ sc 15 TIME FROM OUTPUT BEING SHORTED (MINUTES) \mathbf{o}

Figure 21. Output Short Circuit Current vs. Time

APPLICATIONS INFORMATION

Gain Linearity

The actual open-loop gain of most monolithic op amps varies at different output voltages. This nonlinearity causes errors in high closed-loop gain circuits.

It is important to know that the manufacturer's A_{VO} specification is only a part of the solution, since all automated testers use endpoint testing and, therefore, only show the average gain. For example, Figure 22 shows a typical precision op amp with a respectable open-loop gain of 650 V/mV. However, the gain is not constant through the output voltage range, causing nonlinear errors. An ideal op amp would show a horizontal scope trace.

Figure 23. OP177's Output Gain Linearity Trace

Figure 24. Open-Loop Gain Linearity Test Circuit

Figure 23 shows the OP177's output gain linearity trace with its truly impressive average $A_{\rm VO}$ of 12000 V/mV. The output trace is virtually horizontal at all points, assuring extremely high gain accuracy. PMI also performs additional testing to insure consistent high open-loop gain at various output voltages.

Figure 24 is a simple open-loop gain test circuit for your own evaluation.

THERMOCOUPLE AMPLIFIER WITH COLD-JUNCTION COMPENSATION

An example of a precision circuit is a thermocouple amplifier that must amplify very low level signals accurately without introducing linearity and offset errors to the circuit. In this circuit, an S-type thermocouple, which has a Seebeck coefficient of 10.3 µV/°C, produces 10.3 mV of output voltage at a temperature of 1,000°C. The amplifier gain is set at 973.16. Thus, it will produce an output voltage of 10.024 V. Extended temperature ranges to beyond 1,500°C can be accomplished by reducing the amplifier gain. The circuit uses a low-cost diode to sense the temperature at the terminating junctions and in turn compensates for any ambient temperature change. The OP177, with its high open-loop gain, plus low offset voltage and drift combines to yield a very precision temperature sensing circuit. Circuit values for other thermocouple types are shown in Table I.

Table I.

Figure 25. Thermocouple Amplifier with Cold Junction Compensation

PRECISION HIGH GAIN DIFFERENTIAL AMPLIFIER

The high gain, gain linearity, CMRR, and low TCV_{OS} of the OP177 make it possible to obtain performance not previously available in single stage, very high-gain amplifier applications. See Figure 26.

For best CMR, *R*1 $\frac{12}{R2}$ must equal *R*3 $\frac{1}{R4}$. In this example, with a 10 mV differential signal, the maximum errors are as listed in Table II.

Figure 26. Precision High Gain Differential Amplifier

Type Amount

ISOLATING LARGE CAPACITIVE LOADS

The circuit in Figure 27 reduces maximum slew-rate but allows driving capacitive loads of any size without instability. Because the 100 Ω resistor is inside the feedback loop, its effect on output impedance is reduced to insignificance by the high openloop gain of the OP177.

Figure 27. Isolating Capacitive Loads

Figure 28. Bilateral Current Source

Figure 29. Precision Absolute Value Amplifier

BILATERAL CURRENT SOURCE

The current sources shown in Figure 28 will supply both positive and negative current into a grounded load.

Note that
$$
Z_O = \frac{R5 \left(\frac{R4}{R2} + 1 \right)}{\frac{R5 + R4}{R2} - \frac{R3}{R1}}
$$

and that for Z_0 to be infinite,

$$
\frac{R5 + R4}{R2} \text{ must} = \frac{R3}{R1}
$$

PRECISION ABSOLUTE VALUE AMPLIFIER

The high gain and low TCV_{OS} assure accurate operation with inputs from microvolts to volts. In this circuit, the signal always appears as a common-mode signal to the op amps. The OP177E CMRR of 140 dB assures errors of less than 1 ppm. See Figure 29.

PRECISION POSITIVE PEAK DETECTOR

In Figure 30, the C_H must be of polystyrene, Teflon*, or polyethylene to minimize dielectric absorption and leakage. The droop rate is determined by the size of C_H and the bias current of the OP41.

PRECISION THRESHOLD DETECTOR/AMPLIFIER

In Figure 32, when $\rm V_{IN}$ < $\rm V_{TH}$, amplifier output swings negative, reverse biasing diode D_1 . $V_{\text{OUT}} = V_{\text{TH}}$ if $R_L = \infty$. When $V_{IN} \geq V_{TH}$, the loop closes,

$$
V_{OUT}=V_{TH}+\left(V_{IN}-V_{TH}\right)\left(1+\frac{R_F}{R_S}\right)
$$

 C_C is selected to smooth the response of the loop.

*Teflon is a registered trademark of the Dupont Company.

Figure 31*.* Precision Threshold Detector/Amplifier

8-Pin Cerdip 8-Pin SO (Q-8) (SO-08) A B **0.005 (0.13) MIN 0.055 (1.4) MAX** 치복 $\frac{1}{n}$ \Box **8 5** \Box **0.1574 (4.00) 0.1497 (3.80) 8 5 0.310 (7.87) PIN 1 PIN 1 0.2440 (6.20) 0.220 (5.59) 1 4 0.2284 (5.80)** $\frac{1}{2}$ **1** П Т **4** Ē $\overline{}$ **0.320 (8.13) 0.1968 (5.00) 0.0196 (0.50) 0.0099 (0.25) x 45° 0.1890 (4.80)** \rightarrow **0.405 (10.29) MAX 0.290 (7.37) kg** $\mathbf t$ **0.060 (1.52) 0.0098 (0.25)**
 0.0040 (0.10)
 1.0040 (0.10)
 1.0040 (0.10)
 1.0040 (0.10) 0.200 (5.08) MAX 0.015 (0.38) $\sqrt{ }$ $\begin{array}{c|c} \hline \begin{array}{c} \hline \end{array} & \end{array}$ **0.0192 (0.49) 8° 0° 0.0500 (1.27) 0.0160 (0.41) 0.0500 (1.27) BSC 0.150 0.015 (0.38) 0.0098 (0.25) 0.0075 (0.19) 0.0138 (0.35) (3.81) 0.008 (0.20) 0.200 (5.08) 0.125 (3.18) MIN 15° 0° 0.023 (0.58) 0.014 (0.36) 0.070 (1.78) 0.030 (0.76) 0.100 (2.54) BSC SEATING PLANE 8-Pin Plastic DIP 20-Pin LCC (N-8) (E-20A) 0.200 (5.08) BSC** $\overline{1}$ **0.075 8 5 0.358 (9.09) 0.100 (2.54) (1.91) REF** $\frac{0.888(0.88)}{0.342(8.69)}$
SQ **0.100 (2.54) BSC 0.064 (1.63) 0.280 (7.11) 0.240 (6.10) 0.342 (8.69) PIN 1** × **0.015 (0.38) MIN** $\frac{1}{2}$ **79911** $\overline{1}$ **0.095 (2.41) 1 4 1 20 4 19** ុ ≂ ╤ **0.075 (1.90) ¹⁸ 0.028 (0.71)** ר
ק **0.358 (9.09) 0.011 (0.28) 0.325 (8.25) 0.300 (7.62) TOP VIEW 0.022 (0.56) 0.430 (10.92) 0.348 (8.84) BOTTOM VIEW** \bigstar **MAX 0.007 (0.18) R TYP SQ 0.050 (1.27) 0.060 (1.52) 14 BSC 0.075 (1.91) 9 8 0.195 (4.95) 0.115 (2.93) REF 0.210 (5.33) MAX 15**³ DAL **0.015 (0.38)** ₩ **45**° **TYP 0.150 (3.81)** $\bigoplus_{0.088}$ (2.24) $\overline{\mathbf{A}}$ **0.055 (1.40) 0.130 0.015 (0.381) (3.30)** ┞ **0.054 (1.37)0.045 (1.14) BSC 0.160 (4.06) 0.115 (2.93) 0.008 (0.204) MIN** $\bigoplus_{0.070}$ (1.77) **SEATING PLANE 0.100 (2.54) BSC 0.022 (0.558) 0.014 (0.356) 0.045 (1.15)**

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

