

Micropower, Rail-to-Rail Input and Output Operational Amplifiers

OP196/OP296/OP496

FEATURES

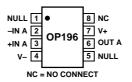
Rail-to-Rail Input and Output Swing Low Power: 60 µA/Amplifier Gain Bandwidth Product: 450 kHz Single-Supply Operation: +3 V to +12 V Low Offset Voltage: 300 µV max High Open-Loop Gain: 500 V/mV

Unity-Gain Stable No Phase Reversal

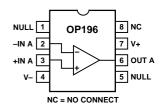
APPLICATIONS
Battery Monitoring
Sensor Conditioners
Portable Power Supply Control
Portable Instrumentation

GENERAL DESCRIPTION

The OP196 family of CBCMOS operational amplifiers features micropower operation and rail-to-rail input and output ranges.

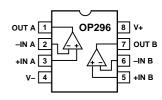

The extremely low power requirements and guaranteed operation from +3 V to +12 V make these amplifiers perfectly suited to monitor battery usage and to control battery charging. Their dynamic performance, including 26 nV/ $\overline{\rm Hz}$ voltage noise density, recommends them for battery-powered audio applications. Capacitive loads to 200 pF are handled without oscillation.

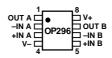
The OP196/OP296/OP496 are specified over the HOT extended industrial (-40° C to $+125^{\circ}$ C) temperature range. +3 V operation is specified over the 0° C to $+125^{\circ}$ C temperature range.

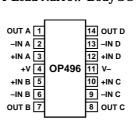

The single OP196 and the dual OP296 are available in 8-lead plastic DIP and SO-8 surface mount packages. The quad OP496 is available in 14-lead plastic DIP and narrow SO-14 surface mount packages.

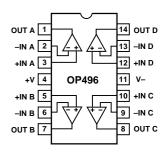
PIN CONFIGURATIONS

8-Lead Narrow-Body SO

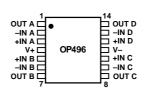

8-Lead Plastic DIP


8-Lead Narrow-Body SO


8-Lead Plastic DIP



8-Lead TSSOP



14-Lead Narrow-Body SO 14-Lead Plastic DIP

14-Lead TSSOP (RU Suffix)

REV. B

OP196/OP296/OP496-SPECIFICATIONS

ELECTRICAL SPECIFICATIONS (@ $V_S = +5.0 \text{ V}$, $V_{CM} = +2.5 \text{ V}$, $T_A = +25 ^{\circ}\text{C}$ unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	V_{OS}	OP196G, OP296G, OP496G		35	300	μV
o .	05	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			650	μV
		OP296H, OP496H			800	μV
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			1.2	mV
Input Bias Current	I_{B}	$-40^{\circ}\text{C} \le \text{T}_{\text{A}}^{\text{C}} \le +125^{\circ}\text{C}$		±10	± 50	nA
Input Offset Current	I _{OS}	A		±1.5	±8	nA
P	05	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			± 20	nA
Input Voltage Range	V_{CM}	A	0		+5.0	V
Common-Mode Rejection Ratio	CMRR	$0 \text{ V} \le \text{V}_{\text{CM}} \le 5.0 \text{ V},$				
3		$-40^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C}$	65			dB
Large Signal Voltage Gain	A_{VO}	$R_{L} = 100 \text{ k}\Omega,$				
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	VO	$0.30 \text{ V} \le \text{V}_{\text{OUT}} \le 4.7 \text{ V},$				
		-40 °C \leq T _A \leq +125°C	150	200		V/mV
Long-Term Offset Voltage	V_{OS}	G Grade, Note 1	100	200	550	μV
Zong Term onder vollage	105	H Grade, Note 1			1	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	C Crade Note 2		1.5	-	μV/°C
2 7		H Grade, Note 2	- E-	2		μV/°C
		H Grade, Note 2 $I_{L} = -100 \mu\text{A}$ $I_{L} = 1 \text{mA}$ $I_{L} = 2 \text{mA}$ $I_{L} = -1 \text{mA}$ $I_{L} = -1 \text{mA}$	- - - - -			
OUTPUT CHARACTERISTICS	* 7	T 100 A	4-0	4.00		* 7
Output Voltage Swing High	V_{OH}	$I_L = -100 \mu\text{A}$	4.85	4.92		V
		$I_L = 1 \text{ mA}$	4.30	4.56		V
	.	$I_L = 2 \text{ mA}$		4.1	~~	V
Output Voltage Swing Low	$V_{ m OL}$	$I_L = -1 \text{ mA}$		36	70	mV
		$I_L = -1 \text{ mA}$		350	550	mV
0 0		$I_L = -2 \text{ mA}$		750		mV
Output Current	I_{OUT}			±4		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$\pm 2.5 \text{ V} \leq \text{V}_{\text{S}} \leq \pm 6 \text{ V},$				
113 3		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	85			dB
Supply Current per Amplifier	I_{SY}	$V_{OUT} = 2.5 \text{ V}, R_L = \infty$			60	μA
		-40 °C $\leq T_A \leq +125$ °C		45	80	μA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 100 \text{ k}\Omega$		0.3		V/µs
Gain Bandwidth Product	GBP	100 K22		350		kHz
Phase Margin				47		Degrees
	Ø _m			11		Degrees
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	0.1 Hz to 10 Hz		0.8		μV p-p
Voltage Noise Density	$\mathbf{e}_{\mathbf{n}}$	f = 1 kHz		26		nV/√ <u>Hz</u>
Current Noise Density	$\mathbf{i}_{\mathbf{n}}$	f = 1 kHz	1	0.19		pA/√Hz

-2-

REV. B

¹Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125 °C, with an LTPD of 1.3. ²Offset voltage drift is the average of the -40 °C to +25 °C delta and the +25 °C to +125 °C delta.

Specifications subject to change without notice.

ELECTRICAL SPECIFICATIONS (@ $V_S = +3.0 \text{ V}$, $V_{CM} = +1.5 \text{ V}$, $T_A = +25 ^{\circ}\text{C}$ unless otherwise noted)

Symbol	Conditions	Min	Typ	Max	Units
Vos	OP196G, OP296G, OP496G		35	300	μV
	$0^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			650	μV
	ОР296Н, ОР496Н			800	μV
	$0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C}$			1.2	mV
I_B			± 10	± 50	nA
I_{OS}			±1	± 8	nA
V_{CM}		0		+3.0	V
CMRR					
					dB
A_{VO}		80	200		V/mV
V _{OS}				550	μV
				1	mV
$\Delta V_{OS}/\Delta T$	F				μV/°C
	H Grade, Note 2		2		μV/°C
V _{OH}	$I_{L} = 100 \mu\text{A}$	2.85			V
V _{OL}	$I_L = -100 \mu\text{A}$	1		70	mV
	75. 34	-0			
Isv	$V_{OUT} = 1.5 \text{ V. } R_1 = \infty$		40	60	μA
31	$0^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			80	μA
	~ -0				
SR	$R_{\rm I} = 100 \text{ k}\Omega$		0.25		V/µs
GBP			350		kHz
Ø _m			45		Degrees
e _n p-p	0.1 Hz to 10 Hz		0.8		μV p-p
	f = 1 kHz		26		nV/√Hz
in	f = 1 kHz		0.19		pA/\sqrt{Hz}
	V_{OS} I_{B} I_{OS} V_{CM} $CMRR$ A_{VO} V_{OS} $\Delta V_{OS}/\Delta T$ V_{OH} V_{OL} I_{SY} SR GBP \emptyset_{m} $e_{n} p-p$ e_{n}	$V_{OS} \qquad \begin{array}{c} OP196G, OP296G, OP496G \\ 0^{\circ}C \leq T_{A} \leq +125^{\circ}C \\ OP296H, OP496H \\ 0^{\circ}C \leq T_{A} \leq +125^{\circ}C \\ \end{array}$ $I_{B} \qquad \qquad$	$V_{OS} \qquad \begin{array}{c} OP196G, OP296G, OP496G \\ 0^{\circ}C \leq T_{A} \leq +125^{\circ}C \\ OP296H, OP496H \\ 0^{\circ}C \leq T_{A} \leq +125^{\circ}C \\ \end{array}$ $I_{B} \qquad \qquad 0 V \leq V_{CM} \leq 3.0 \; V, \\ 0^{\circ}C \leq T_{A} \leq +125^{\circ}C \qquad \qquad 60 \\ A_{VO} \qquad \qquad 0^{\circ}C \leq T_{A} \leq +125^{\circ}C \\ A_{VO} \qquad \qquad R_{L} = 100 \; k\Omega \qquad \qquad 80 \\ V_{OS} \qquad \qquad G \; Grade, \; Note \; 1 \\ \qquad H \; Grade, \; Note \; 1 \\ \qquad H \; Grade, \; Note \; 2 \\ \qquad H \; Grade, \; Note \; 2 \\ \qquad V_{OH} \qquad \qquad I_{L} = 100 \; \mu A \qquad \qquad 2.85 \\ V_{OL} \qquad \qquad I_{L} = -100 \; \mu A \qquad \qquad 2.85 \\ \qquad V_{OUT} = 1.5 \; V, \; R_{L} = \infty \\ \qquad 0^{\circ}C \leq T_{A} \leq +125^{\circ}C \\ \qquad SR \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad \qquad Q_{D} \\ \qquad Q_{D} \qquad $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

REV. B -3-

NOTES 1 Long-term offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125 °C, with an LTPD of 1.3. 2 Offset voltage drift is the average of the 0 °C to +25 °C delta and the +25 °C to +125 °C delta.

Specifications subject to change without notice.

OP196/OP296/OP496 **ELECTRICAL SPECIFICATIONS** (@ $V_S = +12.0 \text{ V}$, $V_{CM} = +6 \text{ V}$, $T_A = +25 ^{\circ}\text{C}$ unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS Offset Voltage	V _{OS}	OP196G, OP296G, OP496G $0^{\circ}C \le T_A \le +125^{\circ}C$		35	300 650	μV μV
		OP296H, OP496H $0^{\circ}C \le T_{A} \le +125^{\circ}C$			800 1.2	μV mV
Input Bias Current	$I_{\rm B}$	$-40^{\circ}\text{C} \leq T_{A} \leq +125^{\circ}\text{C}$		±10	±50	nA
Input Offset Current	I _{OS}			±1	± 8	nA
-		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			± 15	nA
Input Voltage Range	V _{CM}	0.11.2.11.2.11	0		+12	V
Common-Mode Rejection Ratio	CMRR	$ \begin{array}{c} 0 \text{ V} \leq \text{V}_{\text{CM}} \leq +12 \text{ V}, \\ -40^{\circ}\text{C} & \leq \text{T}_{\text{A}} \leq +125^{\circ}\text{C} \end{array} $	65			dB
Large Signal Voltage Gain	A _{VO}	$R_{L} = 100 \text{ k}\Omega$	300	1000		V/mV
Long-Term Offset Voltage	V _{os}	G Grade, Note 1			550	μV
		H Grade, Note 1			1	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	G Grade, Note 2		1.5		μV/°C
		H Grade, Note 2		2		μV/°C
OUTPUT CHARACTERISTICS			4			
Output Voltage Swing High	V _{OH}	$I_L = 100 \mu A$	11.85			V
Output Voltage Swing Low	V _{OL}	$I_{L} = 1 \text{ mA}$ $I_{L} = -1 \text{ mA}$	11.30		70	V mV
Output Voltage Swing Low	VOL	$I_L = -1 \text{ mA}$ $I_L = -1 \text{ mA}$	C		550	mV
Output Current	I_{OUT}	$I_L = 100 \mu\text{A}$ $I_L = 1 \text{mA}$ $I_L = -1 \text{mA}$ $I_L = -1 \text{mA}$		± 4		mA
POWER SUPPLY		CO				
Supply Current per Amplifier	I _{SY}	$V_{OUT} = 6 V, R_L = \infty$			60	μА
		$-40^{\circ}C \leq T_A \leq +125^{\circ}C$			80	μA
Supply Voltage Range	V _S		+3		+12	V
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 100 \text{ k}\Omega$		0.3		V/µs
Gain Bandwidth Product	GBP			450 50		kHz
Phase Margin	Ø _m			<u> </u>		Degrees
NOISE PERFORMANCE		0.1 H-4- 10 H		0.0		
Voltage Noise	e _n p-p	0.1 Hz to 10 Hz		0.8		μV p-p
Voltage Noise Density Current Noise Density	$\mathbf{e_n}$ $\mathbf{i_n}$	f = 1 kHz f = 1 kHz		26 0.19		nV/\sqrt{Hz} pA/\sqrt{Hz}
NOTES	ın ı	1 - 1 1112		0.10		Pri viiz

-4-

REV. B

NOTES $^{1}Long\text{-term}$ offset voltage is guaranteed by a 1000 hour life test performed on three independent lots at +125 °C, with an LTPD of 1.3. $^{2}Offset$ voltage drift is the average of the -40 °C to +25 °C delta and the +25 °C to +125 °C delta.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage
Input Voltage ² +15 V
Differential Input Voltage ² +15 V
Output Short Circuit Duration Indefinite
Storage Temperature Range
P, S, RU Package65°C to +150°C
Operating Temperature Range
OP196G, OP296G, OP496G, H40°C to +125°C
Junction Temperature Range
P, S, RU Package65°C to +150°C
Lead Temperature Range (Soldering, 60 sec) +300°C

Package Type	$\theta_{\mathrm{JA}}{}^{3}$	θ_{JC}	Units
8-Lead Plastic DIP	103	43	°C/W
8-Lead SOIC	158	43	°C/W
8-Lead TSSOP	240	43	°C/W
14-Lead Plastic DIP	83	39	°C/W
14-Lead SOIC	120	36	°C/W
14-Lead TSSOP	180	35	°C/W

NOTES

ORDERING GUIDE

Model	Temperature	Package	Package	
	Range	Description	Option	
OP196GP	-40°C to +125°C	8-Lead Plastic DIP	N-8	
OP196GS	-40°C to +125°C	8-Lead SOIC	SO-8	
OP296GP	-40°C to +125°C	8-Lead Plastic DIP	N-8	
OP296GS	-40°C to +125°C	8-Lead SOIC	SO-8	
OP296HRU	-40°C to +125°C	8-Lead TSSOP	RU-8	
OP496GP	-40°C to +125°C	14-Lead Plastic DIP	N-14	
OP496GS	-40°C to +125°C	14-Lead SOIC	SO-14	
OP496HRU	-40°C to +125°C	14-Lead TSSOP	RU-14	

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP196/OP296/OP496 feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. B -5-

 $^{^{1}\!\}text{Absolute}$ maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

²For supply voltages less than +15 V, the absolute maximum input voltage is

equal to the supply voltage. $^3\theta_{JA}$ is specified for the worst case conditions, i.e., θ_{JA} is specified for device in socket for P-DIP package; θ_{JA} is specified for device soldered in circuit board for SOIC and TSSOP packages.

OP196/OP296/OP496-Typical Performance Characteristics

Figure 1. Input Offset Voltage Distribution

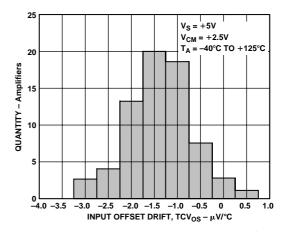


Figure 4. Input Offset Voltage Distribution (TCV_{OS})

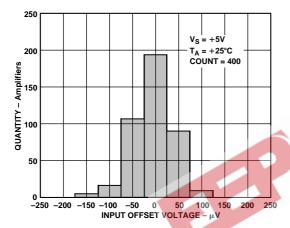


Figure 2. Input Offset Voltage Distribution

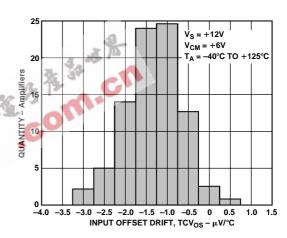


Figure 5. Input Offset Voltage Distribution (TCV_{OS})

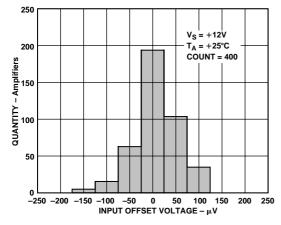


Figure 3. Input Offset Voltage Distribution

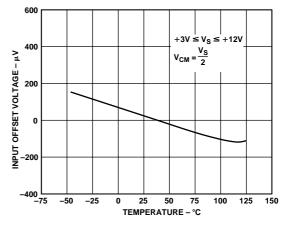


Figure 6. Input Offset Voltage vs. Temperature

-6- REV. B

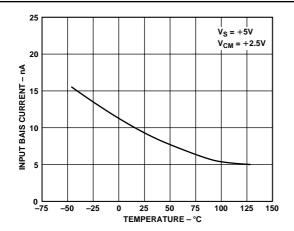


Figure 7. Input Bias Current vs. Temperature

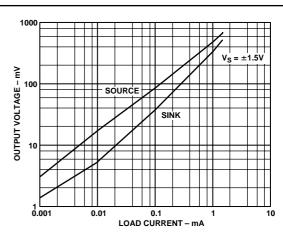


Figure 10. Output Voltage to Supply Rail vs. Load Current

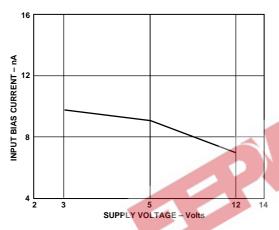


Figure 8. Input Bias Current vs. Supply Voltage

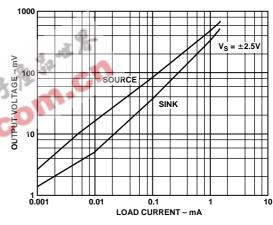


Figure 11. Output Voltage to Supply Rail vs. Load Current

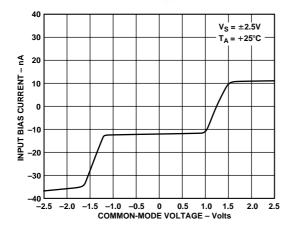


Figure 9. Input Bias Current vs. Common-Mode Voltage

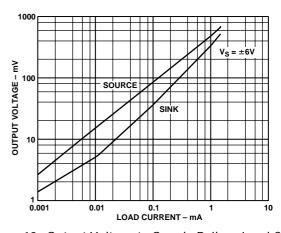


Figure 12. Output Voltage to Supply Rail vs. Load Current

REV. B -7-

OP196/OP296/OP496-Typical Performance Characteristics

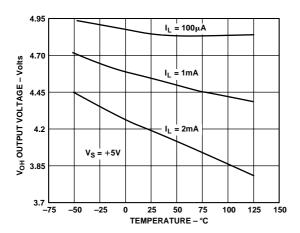


Figure 13. Output Voltage Swing vs. Temperature

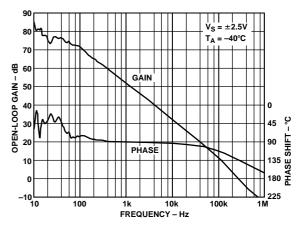


Figure 16. Open-Loop Gain and Phase vs. Frequency (No Load)

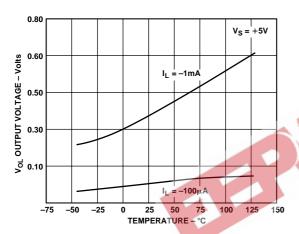


Figure 14. Output Voltage Swing vs. Temperature

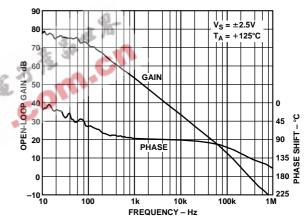


Figure 17. Open-Loop Gain and Phase vs. Frequency (No Load)

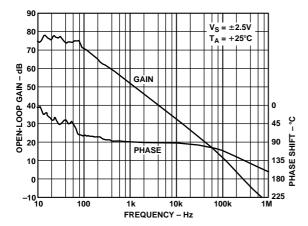


Figure 15. Open-Loop Gain and Phase vs. Frequency (No Load)

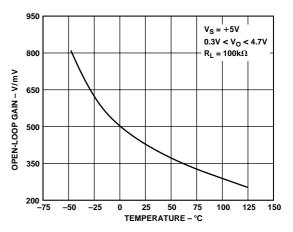


Figure 18. Open-Loop Gain vs. Temperature

-8- REV. B

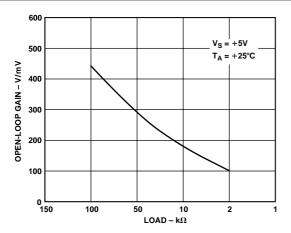


Figure 19. Open Loop Gain vs. Resistive Load

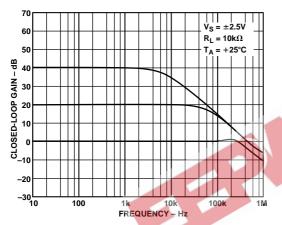


Figure 20. Closed-Loop Gain vs. Frequency

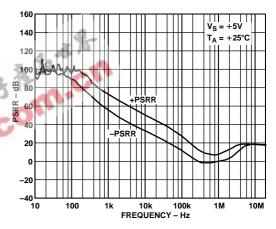


Figure 23. PSRR vs. Frequency

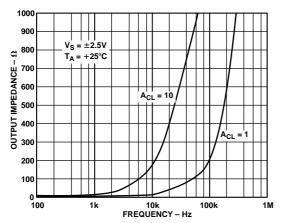


Figure 21. Output Impedance vs. Frequency

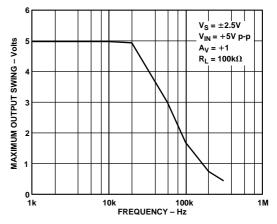


Figure 24. Maximum Output Swing vs. Frequency

REV. B -9-

OP196/OP296/OP496-Typical Performance Characteristics

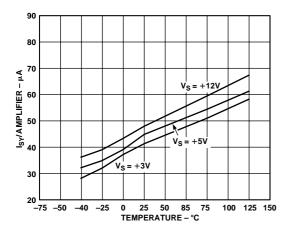


Figure 25. Supply Current/Amplifier vs. Temperature

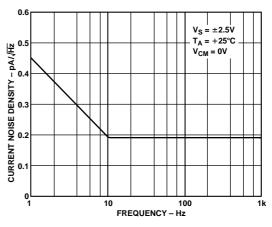


Figure 28. Input Bias Current Noise Density vs. Frequency

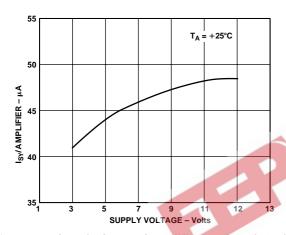


Figure 26. Supply Current/Amplifier vs. Supply Voltage

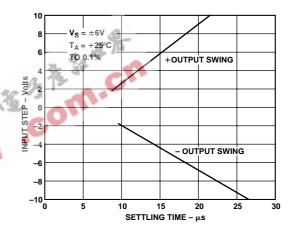


Figure 29. Settling Time to 0.1% vs. Step Size

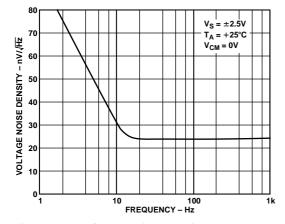


Figure 27. Voltage Noise Density vs. Frequency

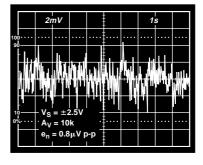


Figure 30. 0.1 Hz to 10 Hz Noise

-10- REV. B

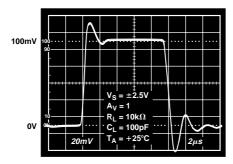


Figure 31. Small Signal Transient Response

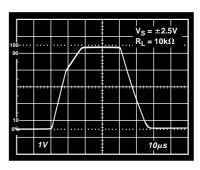


Figure 33. Large Signal Transient Response

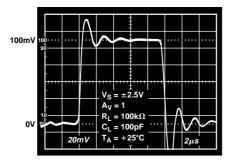


Figure 32. Small Signal Transient Response

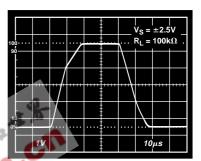


Figure 34. Large Signal Transient Response

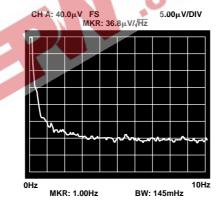


Figure 35. 1/f Noise Corner, $V_S = \pm 5 V$, $A_V = 1,000$

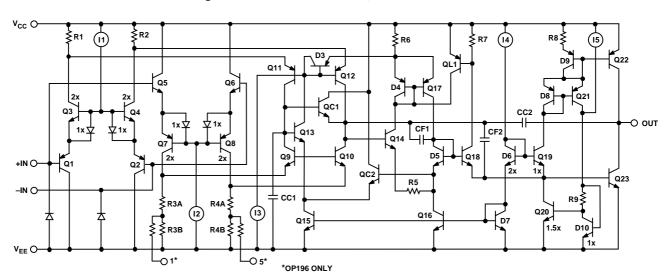


Figure 36. Simplified Schematic

REV. B –11–

APPLICATIONS INFORMATION

Functional Description

The OP196 family of operational amplifiers is comprised of single-supply, micropower, rail-to-rail input and output amplifiers. Input offset voltage (V_{OS}) is only 300 μV maximum, while the output will deliver ± 5 mA to a load. Supply current is only 50 μA , while bandwidth is over 450 kHz and slew rate is 0.3 V/ μs . Figure 36 is a simplified schematic of the OP196—it displays the novel circuit design techniques used to achieve this performance.

Input Overvoltage Protection

The OPx96 family of op amps uses a composite PNP/NPN input stage. Transistor Q1 in Figure 36 has a collector-base voltage of 0 V if +IN = $V_{\rm EE}.$ If +IN then exceeds $V_{\rm EE},$ the junction will be forward biased and large diode currents will flow, which may damage the device. The same situation applies to +IN on the base of transistor Q5 being driven above $V_{\rm CC}.$ Therefore, the inverting and noninverting inputs must not be driven above or below either supply rail unless the input current is limited.

Figure 37 shows the input characteristics for the OPx96 family. This photograph was generated with the power supply pins connected to ground and a curve tracer's collector output drive connected to the input. As shown in the figure, when the input voltage exceeds either supply by more than 0.6 V, internal pnjunctions energize and permit current flow from the inputs to the supplies. If the current is not limited, the amplifier may be damaged. To prevent damage, the input current should be limited to no more than 5 mA.

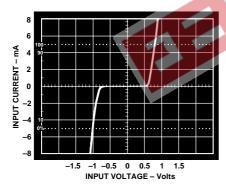


Figure 37. Input Overvoltage I-V Characteristics of the OPx96 Family

Output Phase Reversal

Some other operational amplifiers designed for single-supply operation exhibit an output voltage phase reversal when their inputs are driven beyond their useful common-mode range. Typically for single-supply bipolar op amps, the negative supply determines the lower limit of their common-mode range. With these common-mode limited devices, external clamping diodes are required to prevent input signal excursions from exceeding the device's negative supply rail (i.e., GND) and triggering output phase reversal.

The OPx96 family of op amps is free from output phase reversal effects due to its novel input structure. Figure 38 illustrates the performance of the OPx96 op amps when the input is driven beyond the supply rails. As previously mentioned, amplifier

input current must be limited if the inputs are driven beyond the supply rails. In the circuit of Figure 38, the source amplitude is ± 15 V, while the supply voltage is only ± 5 V. In this case, a 2 k Ω source resistor limits the input current to 5 mA.

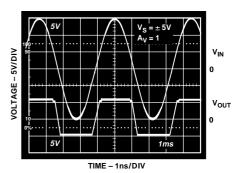


Figure 38. Output Voltage Phase Reversal Behavior

Input Offset Voltage Nulling

The OP196 provides two offset adjust terminals that can be used to null the amplifier's internal $V_{OS}.$ In general, operational amplifier terminals should never be used to adjust system offset voltages. A 100 $k\Omega$ potentiometer, connected as shown in Figure 39, is recommended to null the OP196's offset voltage. Offset nulling does not adversely affect TCV_{OS} performance, providing that the trimming potentiometer temperature coefficient does not exceed ± 100 ppm/°C.

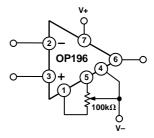


Figure 39. Offset Nulling Circuit

Driving Capacitive Loads

OP196 family amplifiers are unconditionally stable with capacitive loads less than 170 pF. When driving large capacitive loads in unity-gain configurations, an in-the-loop compensation technique is recommended, as illustrated in Figure 40.

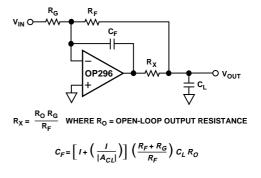


Figure 40. In-the-Loop Compensation Technique for Driving Capacitive Loads

–12– REV. B

A Micropower False-Ground Generator

Some single supply circuits work best when inputs are biased above ground, typically at 1/2 of the supply voltage. In these cases, a false-ground can be created by using a voltage divider buffered by an amplifier. One such circuit is shown in Figure 41.

This circuit will generate a false-ground reference at 1/2 of the supply voltage, while drawing only about 55 μA from a 5 V supply. The circuit includes compensation to allow for a 1 μF bypass capacitor at the false-ground output. The benefit of a large capacitor is that not only does the false-ground present a very low dc resistance to the load, but its ac impedance is low as well.

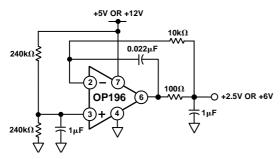


Figure 41. A Micropower False-Ground Generator

Single-Supply Half-Wave and Full-Wave Rectifiers

An OP296, configured as a voltage follower operating from a single supply, can be used as a simple half-wave rectifier in low frequency (<400 Hz) applications. A full-wave rectifier can be configured with a pair of OP296s as illustrated in Figure 42.

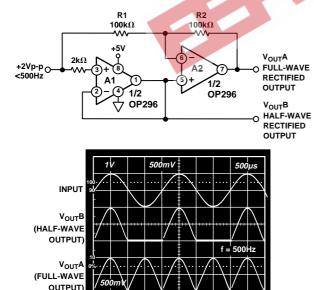


Figure 42. Single-Supply Half-Wave and Full-Wave Rectifiers Using an OP296

The circuit works as follows: When the input signal is above 0 V, the output of amplifier A1 follows the input signal. Since the noninverting input of amplifier A2 is connected to A1's output, op amp loop control forces A2's inverting input to the

same potential. The result is that both terminals of R1 are at the same potential and no current flows in R1. Since there is no current flow in R1, the same condition must exist in R2; thus, the output of the circuit tracks the input signal. When the input signal is below 0 V, the output voltage of A1 is forced to 0 V. This condition now forces A2 to operate as an inverting voltage follower because the noninverting terminal of A2 is also at 0 V. The output voltage of $V_{\rm OUT}A$ is then a full-wave rectified version of the input signal. A resistor in series with A1's noninverting input protects the ESD diodes when the input signal goes below ground.

Square Wave Oscillator

The oscillator circuit in Figure 43 demonstrates how a rail-to-rail output swing can reduce the effects of power supply variations on the oscillator's frequency. This feature is especially valuable in battery powered applications, where voltage regulation may not be available. The output frequency remains stable as the supply voltage changes because the RC charging current, which is derived from the rail-to-rail output, is proportional to the supply voltage. Since the Schmitt trigger threshold level is also proportional to supply voltage, the frequency remains relatively independent of supply voltage. For a supply voltage change from 9 V to 5 V, the output frequency only changes about 4 Hz. The slew rate of the amplifier limits the oscillation frequency to a maximum of about 200 Hz at a supply voltage of ± 5 V.

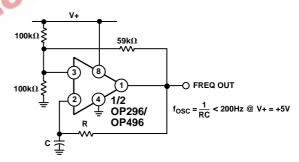


Figure 43. Square Wave Oscillator Has Stable Frequency Regardless of Supply Voltage Changes

A 3 V Low Dropout, Linear Voltage Regulator

Figure 44 shows a simple +3 V voltage regulator design. The regulator can deliver 50 mA load current while allowing a 0.2 V dropout voltage. The OP296's rail-to-rail output swing easily drives the MJE350 pass transistor without requiring special drive circuitry. With no load, its output can swing to less than the pass transistor's base-emitter voltage, turning the device nearly off. At full load, and at low emitter-collector voltages, the transistor beta tends to decrease. The additional base current is easily handled by the OP296 output.

The AD589 provides a 1.235 V reference voltage for the regulator. The OP296, operating with a noninverting gain of 2.43, drives the base of the MJE350 to produce an output voltage of 3.0 V. Since the MJE350 operates in an inverting (commonemitter) mode, the output feedback is applied to the OP296's noninverting input.

REV. B -13-

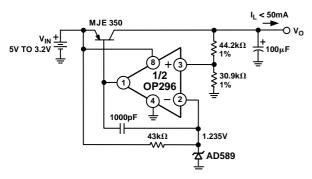


Figure 44. 3 V Low Dropout Voltage Regulator

Figure 45 shows the regulator's recovery characteristics when its output underwent a 20 mA to 50 mA step current change.

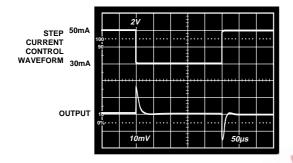


Figure 45. Output Step Load Current Recovery

Buffering a DAC Output

Multichannel TrimDACs® such as the AD8801/AD8803, are widely used for digital nulling and similar applications. These DACs have rail-to-rail output swings, with a nominal output resistance of 5 k Ω . If a lower output impedance is required, an OP296 amplifier can be added. Two examples are shown in Figure 45. One amplifier of an OP296 is used as a simple buffer to reduce the output resistance of DAC A. The OP296 provides rail-to-rail output drive while operating down to a 3 V supply and requiring only 50 μ A of supply current.

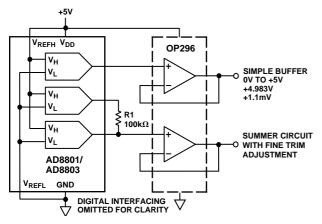


Figure 46. Buffering a TrimDAC Output

The next two DACs, B and C, sum their outputs into the other OP296 amplifier. In this circuit DAC C provides the coarse output voltage setting and DAC B is used for fine adjustment. The insertion of R1 in series with DAC B attenuates its contribution to the voltage sum node at the DAC C output.

A High-Side Current Monitor

In the design of power supply control circuits, a great deal of design effort is focused on ensuring a pass transistor's long-term reliability over a wide range of load current conditions. As a result, monitoring and limiting device power dissipation is of prime importance in these designs. The circuit illustrated in Figure 47 is an example of a +5 V, single-supply high-side current monitor that can be incorporated into the design of a voltage regulator with fold-back current limiting or a high current power supply with crowbar protection. This design uses an OP296's rail-to-rail input voltage range to sense the voltage drop across a 0.1 Ω current shunt. A p-channel MOSFET is used as the feedback element in the circuit to convert the op amp's differential input voltage into a current. This current is then applied to R2 to generate a voltage that is a linear representation of the load current. The transfer equation for the current monitor is given by:

$$Monitor\ Output = R2 \times \left(\frac{R_{SENSE}}{R1}\right) \times I_L$$

For the element values shown, the Monitor Output's transfer characteristic is 2.5 V/A.

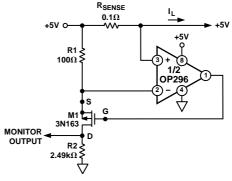


Figure 47. A High-Side Load Current Monitor

A Single-Supply RTD Amplifier

-14-

The circuit in Figure 48 uses three op amps on the OP496 to produce a bridge driver for an RTD amplifier while operating from a single +5 V supply. The circuit takes advantage of the OP496's wide output swing to generate a bridge excitation voltage of 3.9 V. An AD589 provides a 1.235 V reference for the bridge current. Op amp A1 drives the bridge to maintain 1.235 V across the parallel combination of the 6.19 $k\Omega$ and 2.55 $M\Omega$ resistors, which generates a 200 μA current source. This current divides evenly and flows through both halves of the bridge. Thus, 100 μA flows through the RTD to generate an output voltage which is proportional to its resistance. For improved accuracy, a 3-wire RTD is recommended to balance the line resistance in both 100 Ω legs of the bridge.

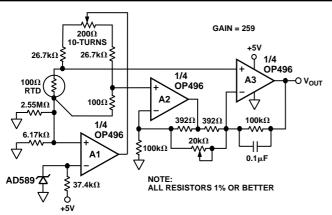


Figure 48. A Single Supply RTD Amplifier

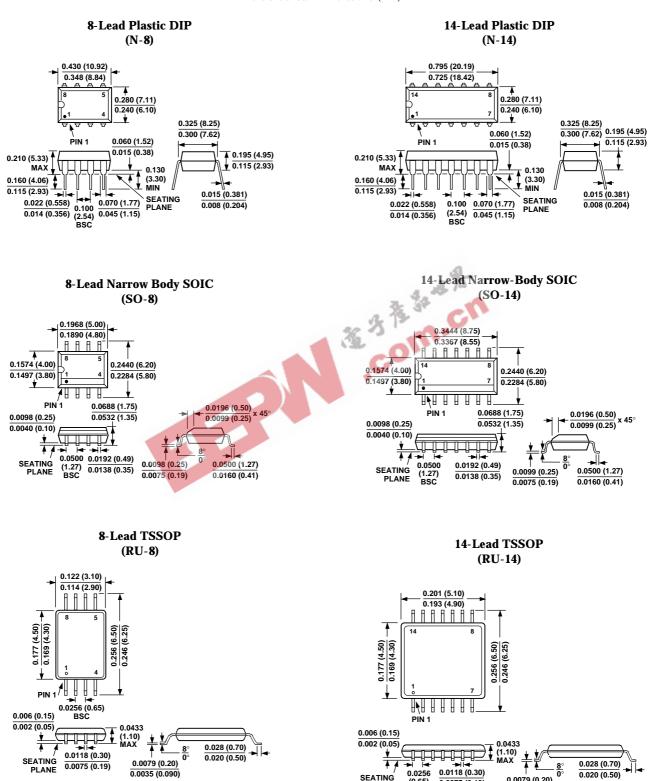
Amplifiers A2 and A3 are configured in a two op amp instrumentation amplifier configuration. For ease of measurement, the IA resistors are chosen to produce a gain of 259, so that each $1^{\circ}C$ increase in temperature results in a 10 mV increase in the output voltage. To reduce measurement noise, the bandwidth of the amplifier is limited. A 0.1 μF capacitor, connected in parallel with the 100 $k\Omega$ resistor on amplifier A3, creates a pole at 16 Hz.

* OP496 SPICE Macro-model	REV. B, 5/95 ARG / ADSC	CIN 1	2	1P		
*	11100 / 11200	* GAIN ST.	AGE	0		
* Copyright 1995 by Analog De	vices	*	. 3	707.77(0)	(2.2.2)	(200)
*	C. I.	EREF 98	0	POLY(2)	(99,0)	(50,0) 0 0.5 0.5 (13,12) 0 10U 10U
* Refer to "README.DOC" fil * Use of this model indicates you		G1 98 R10 15	98	POLY(2) 251.641MEG	(6,5)	(13,12) 0 100 100
* terms and provisions in the Lie	ense Statement.	CC 15	4 9	8P		
*		D1 15	99	DX		
* Node assignments		D2 50	15	DX		
	ting input	* COMMO	N MOI	DE STAGE		
*	verting input Positive supply	*	IN IVIO	DESTAGE		
*	Negative supply	ECM 16	98	POLY(2)	(1,98)	(2,98) 0 0.5 0.5
*	Output	R11 16	17	1MEG		
*	1	R12 17	98	10		
* .SUBCKT OP496 1 2	99 50 49	* OUTPUT	STAC	`F		
.SUBCKT OP496 1 2	99 50 49	*	SIAC	71.5		
* INPUT STAGE		ISY 99	50	20 U		
INFOISIAGE		EIN 35	50	POLY(1)		
*		Q24 37	35	36 50	QN	1
IREF 21 50 1U	OD 1	QD4 37 Q27 40	37 37	38 99 38 99	QP QP	1
QB1 21 21 99 99 QB2 22 21 99 99		Ř5 36	39	150K	A1	1
QB2 22 21 99 99 QB3 4 21 99 99		R6 99	38	45K		
QB4 22 22 50 50		Q26 39	42	50 50	QN	3
QB5 11 22 50 50) QN 3	QD5 40	40	39 50	QN	1
Q1 5 4 7 50		Q28 41 QL1 37	40 41	44 50 99 99	QN QP	1
Q2 6 4 8 50		Ř7 99	41	10.7K	ŲΓ	1
Q3 4 4 7 50 Q4 4 4 8 50		I4 99	43	2U		
Q5 50 1 7 99		QD7 42	42	50 50	QN	2
Q6 50 3 8 99) QP 2	QD6 43	43	42 50	QN	2
EOS 3 2 POLY(1)	(17,98) 35U 1	Q29 47 Q30 44	43 45	44 50 50 50	QN QN	1 1.5
Q7 99 1 9 50		QD10 45	46	50 50	QΝ	1.5
Q8 99 3 10 50 Q9 12 11 9 99		R9 45	46	175	4.1	•
Q10 13 11 10 99		Q31 46	47	48 99	QP	1
Q11 11 11 9 99		QD8 47	47	48 99	QP	1
Q12 11 11 10 99		QD9 48	48	51 99	QP	5
R1 99 5 50K		R8 99 I5 99	51 46	2.9K 1U		
R2 99 6 50K R3 12 50 50K		Q32 49	48	99 99	QP	10
R3 12 50 50K R4 13 50 50K		Q33 49	44	50 50	QΝ	4
IOS 1 2 0.75N		.MODEL	DX	D()	·	
C10 5 6 3.183P		.MODEL	QN	NPN(BF=120		
C11 12 13 3.183P		.MODEL .ENDS	QP	PNP(BF=80	VAF=60	J)
		ENDS.				

REV. B -15-

SEATING

PLANE


0.0075 (0.19)

0.0079 (0.20)

0.0035 (0.090)

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

SEATING

-16-

PLANE

(0.65)

0.0075 (0.19)

REV. B

0.0079 (0.20)

0.0035 (0.090)

0.028 (0.70)

0.020 (0.50)