PN Junction Silicon Photodiode Type OP900SL #### **Features** - · Narrow receiving angle - Enhanced temperature range - Ideal for direct mounting in PC boards - Fast switching speed - Mechanically and spectrally matched to the OP123 series emitters - Linear response vs. irradiance #### Description The OP900SL consists of a PN junction silicon photodiode mounted in a miniature, glass lensed, hermetically sealed "Pill" package. The lensing effect allows an acceptance half angle of 18° measured from the optical axis to the half power point. #### Replaces OP900 series #### **Absolute Maximum Ratings (**T_A = 25° C unless otherwise noted) | Reverse Voltage | 100 \ | |--|---------------------| | Storage Temperature Range65° C to | +150° (| | Operating Temperature Range65° C to | +125° (| | Soldering Temperature (5 sec. with soldering iron) | 260° C(1 | | Power Dissipation | 50 mW ⁽² | | Notes | | - (1) RMA flux is recommended. Duration can be extended to 10 sec. max. when flow soldering. - (2) Derate linearly 0.5 mW/° C above 25° C. - (3) Junction temperature maintained at 25° C. - (4) Light source is an unfiltered tungsten bulb operating at CT = 2870 K or equivalent infrared source. ### **Typical Performance Curves** # **Typical Spectral Response** # Type OP900SL Electrical Characteristics (T_A = 25° C unless otherwise noted) | SYMBOL | PARAMETER | MIN | TYP | MAX | UNITS | TEST CONDITIONS | |----------------|---------------------------|-----|------------|-----|----------|---| | | Light Current | 8.0 | 14.0 | | μА | $V_R = 10 \text{ V, } E_e = 20 \text{ mW/cm}^{2(3)(4)}$ | | I _D | Dark Current | | | 10 | nA | $V_R = 10 \text{ V, } E_e = 0^{(3)}$ | | | Reverse Voltage Breakdown | 100 | 150 | | V | I _R = 100 μA | | t _r | Rise Time | | 100
100 | | ns
ns | V_R = 50 V, I_L = 8 μA R_L = 1 kΩ, See Test Circuit | ## **Typical Performance Curves** **Switching Time** **Test Circuit**