
Tube Liquid Sensor OPB350 Series

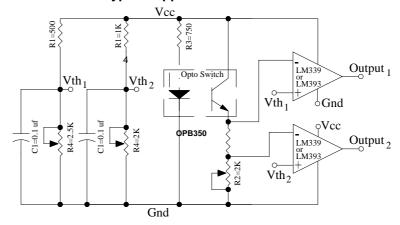
Features:

- Can identify if liquid is present in clear tubes that have an outside diameter of 1/8" (3.2mm), 3/16" (4.8mm) or 1/4" (6.3mm)
- Opaque plastic housing enhances ambient light rejection
- Printed circuit board mounting or 24" (610 mm) wires

Description:

The **OPB350** series liquid sensor is designed to work with 1/8" (3.2mm), 3/16" (4.8mm) and 1/4" (6.3mm) outside diameter clear tubes. When output reference circuitry is added, multiple output states such as "fluid present," "no fluid present" and "no tube present" can be recognized.

Clear liquid present causes the phototransistor to sink the maximum current, while dark liquid present causes it to sink the minimum current. As bubbles pass through the tube, the signal will vary between the "liquid present" and "no liquid" states. If no liquid is present, the phototransistor sinks only a small amount of current. If no tube is present, the phototransistor sinks a larger current than in the "no liquid" state.

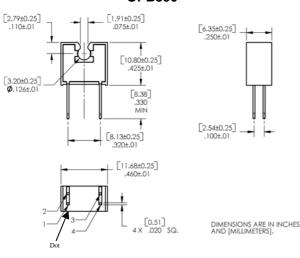

Smaller outside diameter tubes can be used when the tube is sized up to one of the standard sizes and is fitted properly in the housing opening. For example, fluid in a 1/16" (1.6mm) outside diameter tube can be sensed when a piece of tubing with a 1/8" (3.2mm) outside diameter and a 1/16" (1.6mm) inside diameter is used as an adapter.

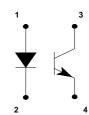
Applications:

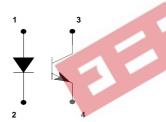
- Non-contact fluid sensing
- IV fluid
- Oils and other petroleum products
- Colored fluids
- Toner fluids
- Water

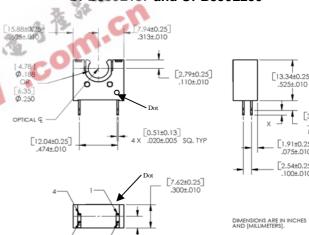
Ordering Information							
Part Number	Package	LED Peak Wavelength	Sensor	Tube Size	Lead Length / Spacing		
OPB350				0.125"			
OPB350L187	N			0.187"	0.330" / 0.320"		
OPB350L250		890 nm	Transistor	0.250"			
OPB350W187Z	т			0.187"	24" / 26 AWG Wire		
OPB350W250Z	'			0.250"	24 / 20 AWG Wile		

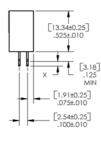
Typical Application Circuit




Tube Liquid Sensor OPB350 Series

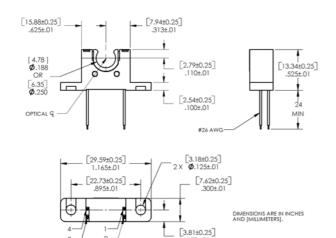


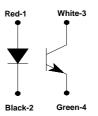

Pin#	LED	Pin#	Transistor
1	Anode	3	Collector
2	Cathode	4	Emitter



OPB350L187 and OPB350L250

Pin#	LED	Pin#	Transistor
1	Anode	3	Collector
2	Cathode	4	Emitter
	1	3	





OPB350W187Z and OPB350W250Z

Pin #	LED	Pin #	Transistor		
Red	Anode	White	Collector		
Black	Cathode	Green	Emitter		

Tube Liquid Sensor OPB350 Series

Absolute Maximum Ratings	(T _A =25°C unless otherwise noted)
--------------------------	---

Storage Temperature	-40° C to +100° C
Operating Temperature	-40° C to +85° C
Lead Soldering Temperature [1/16 inch (1.6mm) from the case for 5 sec. with soldering iron] (2)	260° C

LED

Forward DC Current	50 mA
Peak Forward Current (2 μs pulse width, 0.1% duty cycle)	1 A
Reverse DC Voltage	2 V
Power Dissipation	100 mW

Output Phototransistor

Collector-Emitter Voltage	4	25 or 30 V
Collector DC Current	4.15	50 mA
Power Dissipation	1 30 m	100 mW

Electrical Characteristics (T_A = 25°C unless otherwise noted)

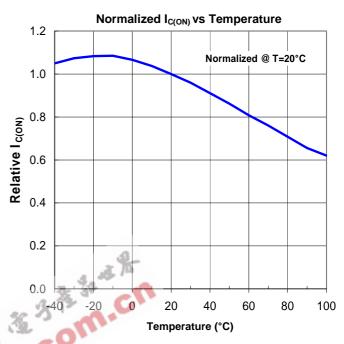
Input LED (See OPB245 for additional information — for reference only)					
V_F Forward Voltage 1.8 V I_F = 20 mA					
I_R Reverse Current 100 μ A $V_R = 2.0 \text{ V}$					

Output Phototransistor (See OPB555 [PB350] & OP750 [-187 & -250] for additional information — for reference only)

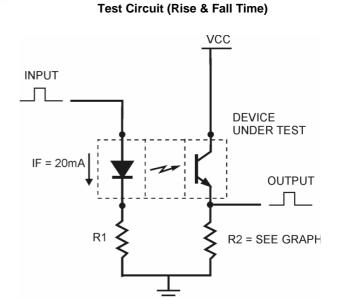
V _{(BR)CEO}	Collector-Emitter OPB350 Breakdown Voltage -187 & -250	30 25	-	-	V	$I_C = 100 \ \mu\text{A}, \ E_E = 0 \ \text{mw/cm}^2$
I _{CEO} Collector-Emitter Dark Current		-	-	100	nA	$V_{CE} = 10 \text{ V}, I_F = 0, E_E = 0 \text{ mw/cm}^2$

Coupled (Tested using clear 0.125" O.D., 0.062 I.D. nylon tubing)


$V_{CE(SAT)}$	Collector-Emitter Saturation Voltage	-	1	0.4	V	$I_C = 100 \mu A, I_F = 5 \text{ mA}$
I _{C(ON)}	On-State Collector Current OPB350 OPB350L187 & OPB350W187 OPB350L250 & OPB350W250	1 1 0.75	3.5 2 1.5	6 4 3	mA	$V_{CE} = 0.4 \text{ V}, I_F = 5 \text{ mA} \\ V_{CE} = 0.4 \text{ V}, I_F = 5 \text{ mA} \\ V_{CE} = 0.4 \text{ V}, I_F = 5 \text{ mA} \\$
On/Off Ratio	OPB350 OPB350L187 & OPB350W187 OPB350L250 & OPB350W250	- - -	3 2.3 2.3	-		$\begin{aligned} &V_{CE} = 0.4 \text{ V, } I_F = 5 \text{ mA , } I.D. = 0.0625" \\ &V_{CE} = 0.4 \text{ V, } I_F = 5 \text{ mA , } I.D. = 0.0870" \\ &V_{CE} = 0.4 \text{ V, } I_F = 5 \text{ mA , } I.D. = 0.1250" \end{aligned}$


Notes:

- (1) All parameters tested using pulse technique.
- (2) RMA flux is recommended. Duration can be extended to 10 seconds maximum when flow soldering.
- (3) Methanol or isopropanol are recommended as cleaning agents. The plastic housing is soluble in chlorinated hydrocarbons and keytones.
- (4) Derate linearly 1.33 mW/° C above 25° C.
- (5) E_{e(APT)} is a measurement of the average apertured radiant energy incident upon a sensing area 0.250" (6.350 mm) in diameter, which is perpendicular to and centered to the mechanical axis of the emitting surface at a distance of 0.466" (11.837 mm).
 E_{e(APT)} is not necessarily uniform within the measured area.


Tube Liquid Sensor OPB350 Series

Rise & Fall Time vs Load Resistance JUU $V_{R2} = 1.0$ 250 Fall Rise & Fall Time (usec) 200 150 100 50 Rise 0 1 2 3 4 5 6 7 8 9 10 Load Resistance (,000 Ohms)

