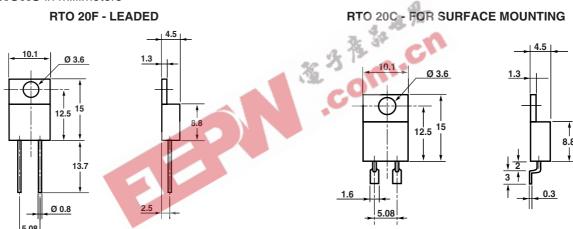

Vishay Sfernice

Power Resistors Thick Film Technology

The well known TO 220 package is compact and easy to mount.


FEATURES

- 20 W at 25 °C Heatsink Mounted
- High Power Dissipation to size ratio
- Wide Resistance Range from 0.01 Ω to 1 M Ω
- Negligible Inductance
- Easy Mounting
- TO 220 package: Compact and easy to mount

Two versions of this thick film resistor are available:

- · A Radial Leaded version for PCB Mounting
- A Flat Lead version for Surface Mounting

DIMENSIONS in millimeters

Tolerance unless otherwise specified: ± 0.4 mm

MECHANICAL SPECIFICATIONS

Mechanical ProtectionInsulated CaseResistive ElementThick FilmConnectionsTinned copperWeight2.2 g max.

DIMENSIONS

Standard Package TO 220

Insulated case

ENVIRONMENTAL SPECIFICATIONS

Temperature Range - 55 °C to + 155 °C

Climatic Category 55/155/56

Sealing Sealed container

Solder immersion IEC 60695-11-5

Flammability IEC 60695-11-5 2 applications 30 s seperated

by 60 s

ELECTRICAL SPECIFICATIONS					
Resistance Range	0.010 Ω to 1 M Ω serie E24				
Tolerances (Standard)	± 1 % to ± 10 %				
Dissipation and Associated:	Onto a heatsink				
Thermal Resistance and Nominal Power	20 W at + 25 °C R _{TH} (j-c): 6.5 °C/W free air: 2 W at + 25 °C				
Temperature Coefficient	See Performance table				
Standard (- 55 °C; + 150 °C)	± 150 ppm/°C				
Limiting Element Voltage	250 V				
Dielectric Strength MIL STD 202	2000 V _{RMS} - 1 min - 10 mA Max (Between Terminals and Heatsink				
Insulation Resistance	$\geq 10^6 \text{M}\Omega$				
Inductance	≤ 0.1 μH				
Critical Resistance	3.12 kΩ				

Document Number: 50005 Revision: 05-Jun-07

 $[\]bullet$ Only for RTO 20 version C = during surface mount soldering temperature profile must not cause the metal tab of this device to exceed 220 °C.

Power Resistors Thick Film Technology

Vishay Sfernice

PERFORMANCE						
TESTS	CONDITIONS	TYPICAL DRIFTS				
Momentary Overload	EN 60115-1 $2 \text{ Pr for R} < 2 \Omega$ $1.6 \text{ Pr for R} \geq 2 \Omega$ $\text{Us} < 1.5 \text{ UL}$	$\pm (0.25 \% + 0.005 \Omega)$				
Rapid Temperature Change	EN 60115-1/60068-2-14 5 cycles - 55 °C to + 155 °C	$\pm (0.5 \% + 0.005 \Omega)$				
Load Life	EN 60115-1 1000 h Pr at + 25 °C	± (1 % + 0.005 Ω)				
Humidity (Steady State)	EN 60115-1 56 days R.H. 95 %	± (0.5 % + 0.005 Ω)				
High Temperature Exposure	NF EN 140 000 1000 h - 40 % Pr at + 100 °C	$\pm (0.5 \% + 0.005 \Omega)$				
Vibration	MIL STD 202, Method 204 C Test D	± (0.2 % + 0.005 Ω)				
Terminal Strength	MIL STD 202, Method 211 Test A1	± (0.2 % + 0.005 Ω)				
Shock	IEC 60115-1 IEC 60068-2-27 Saw tooth: 100 g/6 ms	± (0.5 % + 0.005 Ω)				

SPECIAL FEATURES					
Resistance Values	≥ 0.01		≥ 0.015	≥ 0.1	≥ 0.5
Tolerances	± 1 % at ± 10 %				
Typical Temperature Coefficient Range (- 55 °C/+ 155 °C)	± 900 ppm/°C	± 700 ppm/°C		± 250 ppm/°C	± 150 ppm/°C

Note: For very low ohmic values, TCR for information

CHOICE OF THE HEATSINK

The user must choose according to the working conditions of the component (power, room temperature).

Maximum working temperature must not exceed 155 °C. The dissipated power is simply calculated by the following ratio:

$$P = \frac{\Delta T}{[R_{TH} (j-c) + R_{TH} (c-a)]}^{(1)}$$

P: expressed in W

 ΔT : difference between maximum working temperature and room temperature

R_{TH}: (j-c): thermal resistance value measured between resistive layer and outer side of the resistor. It is the thermal resistance of the component: (Special Features Table)

R_{TH}: (c-a): thermal resistance value measured between outer side of the resistor and room temperature. It is the thermal resistance of the heatsink itself (type, shape) and the quality of the fastening device.

Example:

R_{TH}: (c-a) for RTO 20 power rating 10 W at ambient temperature + 25 °C

Thermal resistance R_{TH} (j-c): 6.5 °C/W

Considering equation (1) we have:

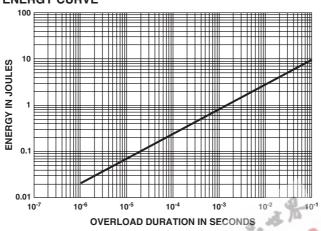
$$\Delta T = 155 \,^{\circ}\text{C} - 25 \,^{\circ}\text{C} = 130 \,^{\circ}\text{C}$$

$$R_{TH}$$
 (j-c) + R_{TH} (c-a) = $\frac{\Delta T}{P}$ = $\frac{130}{10}$ = 13 °C/W

$$R_{TH}$$
 (c-a) = 13 °C/W - 6.5 °C/W = 6.5 °C/W

Vishay Sfernice

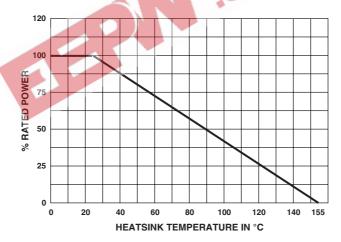
Power Resistors Thick Film Technology


Document Number: 50005

Revision: 05-Jun-07

OVERLOADS

In any case the applied voltage must be lower than the maximum overload voltage of 375 V. The values indicated on the graph below are applicable to resistors in air or mounted onto a heatsink.


ENERGY CURVE

POWER RATING CHART

The temperature of the heatsink should be maintained within the limits specified.

To improve the thermal conductivity, surfaces in contact should be coated with a silicone grease and the torque applied on the screw for tightening should be around 1 Nm. Spring clip can also be used to mount the component on an heatsink (ex: Kunze, clip KU4-498).

MARKING

Model, Style, Resistance Value (in Ω), Tolerance (in %), Manufacturing Date, VISHAY trademark.

PACKAGING

Tube of 50 units

ORDERING INFORMATION									
RTO	20	F	U68	5 %	XXX	TU50	e3		
MODEL	STYLE	CONNECTIONS	RESISTANCE VALUE	TOLERANCE	CUSTOM DESIGN	PACKAGING	LEAD (Pb)-FREE		
		F: Radial Leads C: Surface Mount		± 1 % ± 2 % ± 5 % ± 10 %	Optional on request: special TCR, shape etc.				

SAP PART NUMBERING GUIDELINES								
RTO	020	F	R6800	J	Т	e3		
MODEL	STYLE	CONNECTIONS	RESISTANCE VALUE	TOLERANCE	PACKAGING	LEAD (Pb)-FREE		

Legal Disclaimer Notice

Vishav

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 Revision: 08-Apr-05