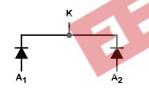
RURG1540CC, RURG1560CC

Data Sheet January 2000 File Number 3548.3

15A, 400V - 600V Ultrafast Dual Diodes

The RURG1540CC and RURG1560CC are ultrafast dual diodes with soft recovery characteristics ($t_{rr} < 55$ ns). They have low forward voltage drop and are of silicon nitride passivated ion-implanted epitaxial planar construction.

These devices are intended for use as freewheeling/clamping diodes and rectifiers in a variety of switching power supplies and other power switching applications. Their low stored charge and ultrafast recovery with soft recovery characteristics minimize ringing and electrical noise in many power switching circuits reducing power loss in the switching transistors.


Formerly developmental type TA09905.

Ordering Information

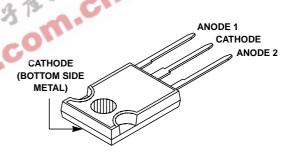
PART NUMBER	PACKAGE	BRAND		
RURG1540CC	TO-247	RURG1540C		
RURG1560CC	TO-247	RURG1560C		

NOTE: When ordering, use the entire part number.

Symbol

Features

Ultrafast with Soft Recovery	<55ns
Operating Temperature	175 ⁰ C
Reverse Voltage Up to	600V


- · Avalanche Energy Rated
- Planar Construction

Applications

- · Switching Power Supplies
- · Power Switching Circuits
- General Purpose

Packaging

JEDEC STYLE TO-247

Absolute Maximum Ratings (Per Leg) T _C = 25°C			
	RURG1540CC	RURG1560CC	UNITS
Peak Repetitive Reverse VoltageV _{RRM}	400	600	V
Working Peak Reverse Voltage	400	600	V
DC Blocking Voltage V _R	400	600	V
Average Rectified Forward Current I _{F(AV)}	15	15	Α
$(T_C = 145^{\circ}C)$			
Repetitive Peak Surge CurrentI _{FRM}	30	30	Α
(Square Wave, 20kHz)			
Nonrepetitive Peak Surge Current	200	200	Α
(Halfwave, 1 Phase, 60Hz)			
Maximum Power Dissipation	100	100	W
Avalanche Energy (See Figures 7 and 8)	20	20	mJ
Operating and Storage Temperature	-65 to 175	-65 to 175	οС

RURG1540CC, RURG1560CC

Electrical Specifications (Per Leg) $T_C = 25^{\circ}C$, Unless Otherwise Specified

	TEST CONDITION	RURG1540CC		RURG1560CC				
SYMBOL		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _F	I _F = 15A	-	-	1.5	-	-	1.5	V
	I _F = 15A, T _C = 150 ^o C	-	-	1.3	-	-	1.3	V
I _R	V _R = 400V	-	-	100	-	-	-	μΑ
	V _R = 600V	-	-	-	-	-	100	μΑ
	V _R = 400V, T _C = 150 ^o C	-	-	500	-	-	-	μΑ
	$V_R = 600V, T_C = 150^{\circ}C$	-	-	-	-	-	500	μΑ
t _{rr}	I _F = 1A, dI _F /dt = 100A/μs	-	-	55	-	-	55	ns
	$I_F = 15A$, $dI_F/dt = 100A/\mu s$	-	-	60	-	-	60	ns
ta	$I_F = 15A$, $dI_F/dt = 100A/\mu s$	-	30	-	-	30	-	ns
t _b	$I_F = 15A$, $dI_F/dt = 100A/\mu s$	-	17	-	-	17	-	ns
$R_{\theta JC}$		-	-	1.5	4/5	-	1.5	°C/W
•	neous forward voltage (pw = 300μs,	D = 2%).		为意	n.cr			
t_{rr} = Reverse t_a = Time to	e recovery time (See Figure 6), sumr reach peak reverse current (See Fig	gure 6).		-				
t _b = Time fro	om peak I _{RM} to projected zero cross	ing of I _{RM} ba	sed on a stra	ight line from	peak I _{RM} thr	ough 25% of	f I _{RM} (See Fig	gure 6).

DEFINITIONS

 $R_{\theta JC}$ = Thermal resistance junction to case

pw = Pulse width.

D = Duty cycle.

Typical Performance Curves

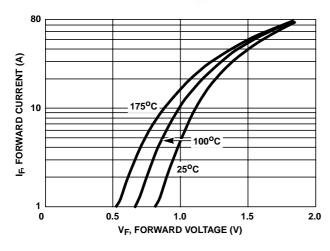


FIGURE 1. FORWARD CURRENT vs FORWARD VOLTAGE

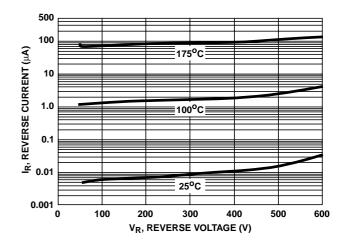
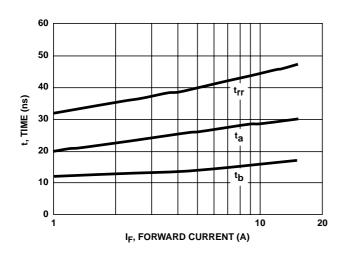



FIGURE 2. REVERSE CURRENT vs REVERSE VOLTAGE

RURG1540CC, RURG1560CC

Typical Performance Curves (Continued)

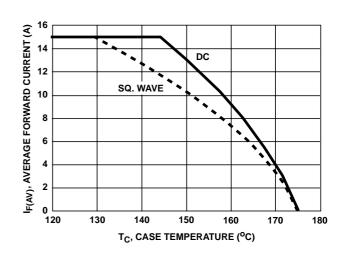


FIGURE 4. CURRENT DERATING CURVE

Test Circuits and Waveforms

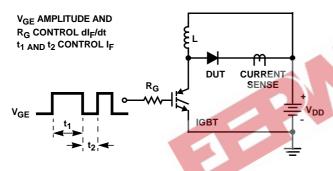


FIGURE 5. t_{rr} TEST CIRCUIT

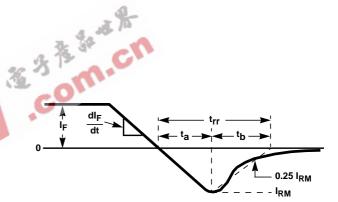


FIGURE 6. t_{rr} WAVEFORMS AND DEFINITIONS

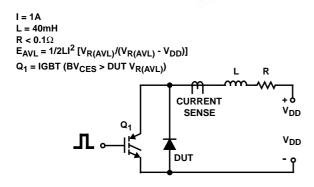


FIGURE 7. AVALANCHE ENERGY TEST CIRCUIT

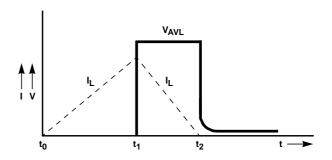


FIGURE 8. AVALANCHE CURRENT AND VOLTAGE WAVEFORMS

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com