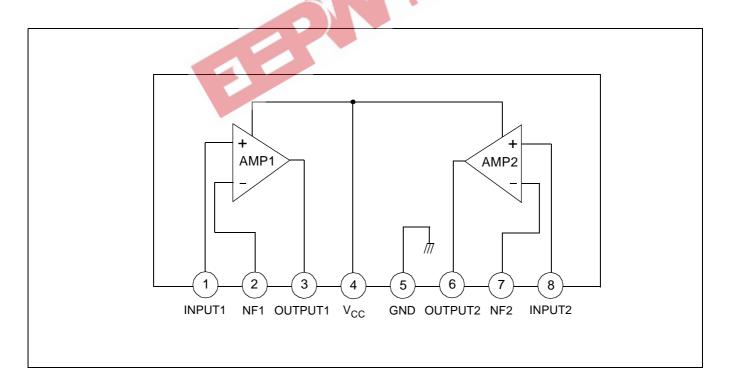

INTRODUCTION

The S1A0211X01 is a monolithic integrated circuit consisting of a 2-channel pre-amplifier in an 8-pin plastic single in-line package.

FEATURES


- Recommended operating supply voltage range: ٠ $V_{CC} = 5V$ to 14V
- Low noise ($V_{NI} = 1.0\mu V$: Typ) •
- High channel separation •
- Minimum number of external parts required .

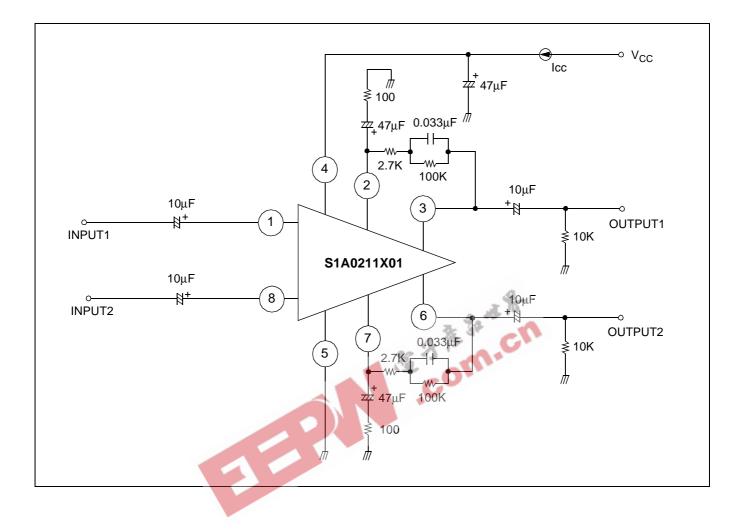
ORDERING INFORMATION

Device	package	Operating Temperature
S1A0211X01-I0U0	8–SIP	–20°C — +70°C
		a some
BLOCK DIAGRAM		G

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{CC}	18	V
Power Dissipation	PD	200	mW
Operating Temperature	T _{OPR}	- 20 - + 70	°C
Storage Temperature	T _{STG}	- 40 - + 125	°C


ELECTRICAL CHARACTERISTICS

(Ta=25°C, V_{CC} = 9V, R_L= 10k Ω , R_G = 600 Ω , f = 1kHz, NAB, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Quiescent Circuit Current	I _{CCQ}	V _I = 0	_	4.0	6.0	mA
Open Loop Voltage Gain	G _{VO}	-	65	80	_	dB
Closed Loop Voltage Gain	G _{VC}	V _O = 0.5V	30	35	37	dB
Output Voltage	V _O	THD = 1%	1.1	1.3	-	V
Total Harmonic Distortion	THD	V _O = 0.5V	-	0.1	0.3	%
Input Resistance	R _I	- 60.	70	100	-	kΩ
Equivalent Input Noise Voltage	V _{NI}	R _G = 2.2kΩ BW (– 3dB) = 15Hz – 30kHz	_	1.0	2.0	μV
Cross Talk	СТ	$R_{G} = 2.2k\Omega$	50	65	-	dB

TEST CIRCUIT

APPLICATION INFORMATION

External Components

C2 (C9): Input coupling capacitor

These components are concerned with the output noise and operation starting time. Its capacitance is adequate for 10μ F.

As C2 (C9) below 4.7μ F extends the operation starting time, a capacitance of over 4.8μ F is recommended.

C3 (C8): Negative feedback capacitor

These components decide the low cut-off frequency, which is determined as follows:

 $C_3 (C_8) = \frac{1}{2\pi f_L \bullet R_2(R_7)} \text{ where, } f_L \text{: low cut-off frequency.}$

A large C_3 (C_8) makes the operation starting time of an amplifier late. Its capacitance is adequate for 47 F.

C_4 , R_3 , R_2 (C_7 , R_4 , R_5): Equalizer network

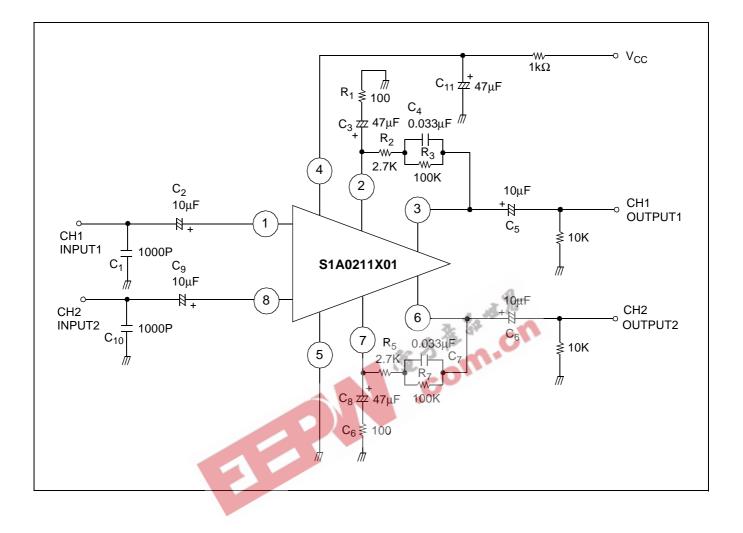
These components decide the frequency response of an equalizer amplifier. The time constant of standard NAB characteristic is as follows:

Tape Speed Time Constant	9.5 cm/sec	4.75 cm/sec
$C_4 (R_2 + R_3)$	3,180 µsec	1,590 µsec
C ₄ , R ₂	90 µsec	120 μ sec

$C_{11}\ \mbox{Filter}$ capacitor of the power line

This should be located as close to the supply voltage pin (Pin 4) as possible. The recommended value is 47µF.

C₁ (C₁₀): Protection capacitor


These components protect against wave damage of strong electric fields. They also protect against engine noise damage and block oscillation during high amplifying operations.

C₅ (C₆): Output coupling capacitor

The recommended value is $10 \mu F.$

APPLICATION CIRCUIT

NOTES

