DATA SHEET

November 1999

SD1010 DATA SHEET DAT-SD1010-1199-B

November 1999

Document	Revisions	Date
DAT-SD1010-1099-A	SD1010 Data Sheet - A	October 1999
DAT-SD1010-1199-B	SD1010 Data Sheet - B	November 1999

Copyright 1999, SmartASIC, Inc. All Right Reserved

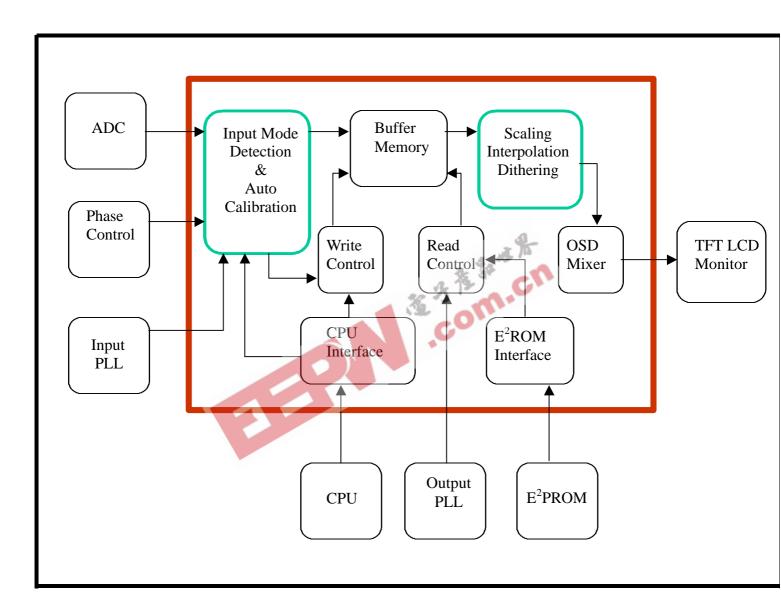
SmartASIC, Inc. reserves the right to change or modify the information contained herein without notice. It is the customer's responsibility to ensure he/she has the most recent revision of the user guide. SmartASIC, Inc. makes no warranty for the use of its products and bears no responsibility for any error or omissions, which may appear in this document.

1. OVERVIEW

The SD1010 is enhanced version of the SD1000 chip. It is an IC designed for dualinterface XGA TFT LCD monitors. A dual-interface LCD monitor takes analog or digital RGB signals from a graphic card of a personal computer, the exact same input interface as a conventional CRT monitor. This feature makes a dual-interface LCD monitor a true replacement for a conventional CRT monitor.

The analog input RGB signals are first sampled by six channels of 8-bit A/D converters, and the 48-bit RGB data are then fed into the SD1010. For digital interface, the input data are first received by a TMDS receiver, and the 24/48 bit RGB output data of TMDS receiver are then fed into the SD1010. The SD1010 is capable of performing automatic detection of the display resolution and timing of input signals generated from various PC graphic cards. No special driver is required for the timing detection, nor any manual adjustment. The SD1010 then automatically scales the input image to fill the full screen of the LCD monitor. The SD1010 can interface with TFT LCD panels from various manufacturers by generating either 24-bit or 48-bit RGB signal to the LCD panel based upon the timing parameters saved in the EEPROM.

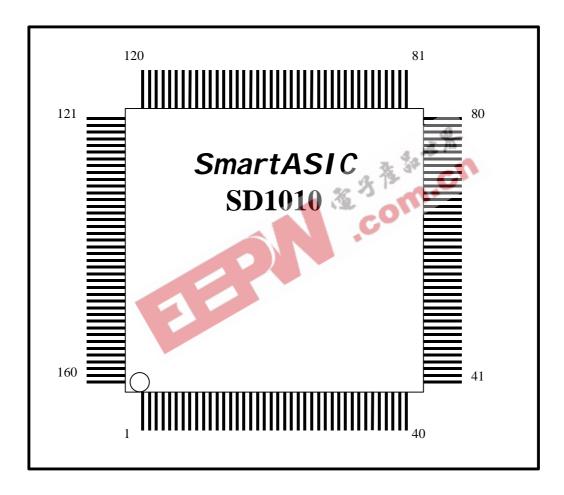
The SD1010 implements four advanced display technologies:


- 1. Advanced mode detection and auto-calibration without any external CPU assist
- 2. Advanced programmable interpolation algorithm
- 3. Stand-alone mode support, and
- 4. Advanced true color support with both dithering and frame modulation.

The SD1010 also provides distinguished system features to the TFT LCD monitor solution. The first one is "plug-and-play", and the second one is "cost-effective system solution". To be truly plug-and-display, the SD1010 performs automatic input mode detection and auto phase calibration, so the LCD monitor can ensure that the A/D converters' sample clock is precisely synchronized with the input video data, and to preserve the highest image bandwidth for the highest image quality. Furthermore, the SD1010 can generate output video even when the input signal is beyond the specifications or no input signal is fed.

For "cost-effective system solution", the SD1010 implements many system support features such as OSD mixer, error status indicators, 2-wire serial interface for both EEPROM and host CPU interface, and low-cost IC package. Another important contributing factor is that the SD1010 does not require external frame buffer memory for the automatic image scaling and synchronization.

Figure 1 shows the block diagram of the SD1010 as well as the connections of important system components around the SD1010.



4

2. PIN DESCRIPTION

Figure 2: SD1010 package diagram

data: 	Symbol	PIN Number	I/O	Description
B_IN123IChannel B Data Input Color BlueB_IN134IChannel B Data Input Color BlueDATA_SEL5IIndicate Channel A or Channel B contains valid in data: 1: data in Channel A is valid 0: data in Channel B is validB_IN146IChannel B Data Input Color BlueB_IN157IChannel B Data Input Color BlueB_IN168IChannel B Data Input Color BlueB_IN179IChannel B Data Input Color Blue (MSB)ROM_SCL100SCL in I²C for EEPROM interfaceROM_SDA11I/OSDA in I²C for CPU interfaceGND12GroundCPU_SCL13ISCL in I²C for CPU interfacePWM_CTL15OPWM control signal (Detail description in PW Operation Section)CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_018OFeedback of free Running ClockRESET_B191System Reset (active LOW)R_OSD201OSD Color GreenB_OSD22IOSD Color Blue		1	Ι	Channel B Data Input Color Blue (LSB)
B_IN134IChannel B Data Input Color BlueDATA_SEL5IIndicate Channel A or Channel B contains valid in data: 1: data in Channel A is valid 0: data in Channel B is validB_IN146IChannel B Data Input Color BlueB_IN157IChannel B Data Input Color BlueB_IN168IChannel B Data Input Color BlueB_IN179IChannel B Data Input Color Blue (MSB)ROM_SCL10OSCL in I²C for EEPROM interfaceROM_SDA11I/OSDA in I²C for CPU interfaceGND12GroundCPU_SCL13ISCL in I²C for CPU interfacePWM_CTL15OPWM_CTL15OPWM_CTL16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_018OFeedback of free Running ClockRESET_B191System Reset (active LOW)R_OSD20IOSD Color GreenB_OSD22IOSD Color Blue	B_IN11	2	Ι	
DATA_SEL5IIndicate Channel A or Channel B contains valid in data: 1: data in Channel A is valid 0: data in Channel B is validB_IN146IChannel B Data Input Color BlueB_IN157IChannel B Data Input Color BlueB_IN168IChannel B Data Input Color BlueB_IN179IChannel B Data Input Color BlueB_IN179IChannel B Data Input Color Blue (MSB)ROM_SCL100SCL in I²C for EEPROM interfaceROM_SDA11I/OSDA in I²C for CPU interfaceGND12GroundCPU_SCL13ISCL in I²C for CPU interfacePWM_CTL150PWM control signal (Detail description in PW Operation Section)CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_0180Feedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color GreenB_OSD22IOSD Color Blue	B_IN12	3	Ι	Channel B Data Input Color Blue
DATA_SEL5IIndicate Channel A or Channel B contains valid in data: 1: data in Channel A is valid 0: data in Channel B is validB_IN146IChannel B Data Input Color BlueB_IN157IChannel B Data Input Color BlueB_IN168IChannel B Data Input Color BlueB_IN179IChannel B Data Input Color BlueB_IN179IChannel B Data Input Color Blue (MSB)ROM_SCL100SCL in I²C for EEPROM interfaceROM_SDA11I/OSDA in I²C for CPU interfaceGND12GroundCPU_SCL13ISCL in I²C for CPU interfacePWM_CTL150PWM control signal (Detail description in PW Operation Section)CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_0180Feedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color GreenB_OSD22IOSD Color Blue	B IN13	4	Ι	Channel B Data Input Color Blue
I: data in Channel A is valid 0: data in Channel B is validB_IN146IChannel B Data Input Color BlueB_IN157IChannel B Data Input Color BlueB_IN168IChannel B Data Input Color BlueB_IN179IChannel B Data Input Color Blue (MSB)ROM_SCL10OSCL in I²C for EEPROM interfaceROM_SDA11I/OSDA in I²C for CPU interfaceGND12GroundCPU_SCL13ISCL in I²C for CPU interfacePWM_CTL15OPWM control signal (Detail description in PW Operation Section)CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_O18OFeedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color GreenB_OSD22IOSD Color Blue		5	Ι	Indicate Channel A or Channel B contains valid input
0: data in Channel B is validB_IN146IChannel B Data Input Color BlueB_IN157IChannel B Data Input Color BlueB_IN168IChannel B Data Input Color BlueB_IN179IChannel B Data Input Color Blue (MSB)ROM_SCL10OSCL in I²C for EEPROM interfaceGND12GroundCPU_SCL13ISCL in I²C for CPU interfacePWM_CTL15OPWM control signal (Detail description in PW Operation Section)CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_O18OFeedback of free Running ClockRESET_B191System Reset (active LOW)R_OSD20IOSD Color GreenB_OSD22IOSD Color Blue	_			data:
B_IN146IChannel B Data Input Color BlueB_IN157IChannel B Data Input Color BlueB_IN168IChannel B Data Input Color BlueB_IN179IChannel B Data Input Color Blue (MSB)ROM_SCL10OSCL in I²C for EEPROM interfaceROM_SDA11I/OSDA in I²C for EEPROM interfaceGND12GroundCPU_SCL13ISCL in I²C for CPU interfaceCPU_SDA14I/OSDA in I²C for CPU interfacePWM_CTL15OPWM control signal (Detail description in PW Operation Section)CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_O18OFeedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color RedG_OSD21IOSD Color Blue				1: data in Channel A is valid
B_IN157IChannel B Data Input Color BlueB_IN168IChannel B Data Input Color BlueB_IN179IChannel B Data Input Color Blue (MSB)ROM_SCL10OSCL in I²C for EEPROM interfaceROM_SDA11I/OSDA in I²C for EEPROM interfaceGND12GroundCPU_SCL13ISCL in I²C for CPU interfaceCPU_SDA14I/OSDA in I²C for CPU interfacePWM_CTL15OPWM control signal (Detail description in PW Operation Section)CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_O18OFeedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color RedG_OSD21IOSD Color Blue				0: data in Channel B is valid
B_IN168IChannel B Data Input Color BlueB_IN179IChannel B Data Input Color Blue (MSB)ROM_SCL10OSCL in I²C for EEPROM interfaceROM_SDA11I/OSDA in I²C for EEPROM interfaceGND12GroundCPU_SCL13ISCL in I²C for CPU interfacePWM_CTL15OPWM control signal (Detail description in PW Operation Section)CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_O18OFeedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color GreenB_OSD22IOSD Color Blue	B_IN14	6	Ι	Channel B Data Input Color Blue
B_IN179IChannel B Data Input Color Blue (MSB)ROM_SCL100SCL in I²C for EEPROM interfaceROM_SDA11I/OSDA in I²C for EEPROM interfaceGND12GroundCPU_SCL13ISCL in I²C for CPU interfaceCPU_SDA14I/OSDA in I²C for CPU interfacePWM_CTL15OPWM control signal (Detail description in PW Operation Section)CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_O18OFeedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color RedG_OSD21IOSD Color Blue	B_IN15	7	Ι	Channel B Data Input Color Blue
ROM_SCL10OSCL in I²C for EEPROM interfaceROM_SDA11I/OSDA in I²C for EEPROM interfaceGND12GroundCPU_SCL13ISCL in I²C for CPU interfaceCPU_SDA14I/OSDA in I²C for CPU interfacePWM_CTL15OPWM control signal (Detail description in PW Operation Section)CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_O18OFeedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color GreenB_OSD22IOSD Color Blue	B_IN16	8	Ι	Channel B Data Input Color Blue
ROM_SDA11I/OSDA in I²C for EEPROM interfaceGND12GroundCPU_SCL13ISCL in I²C for CPU interfaceCPU_SDA14I/OSDA in I²C for CPU interfacePWM_CTL15OPWM control signal (Detail description in PW Operation Section)CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_O18OFeedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color RedG_OSD21IOSD Color Blue	B_IN17	9	Ι	Channel B Data Input Color Blue (MSB)
GND12GroundCPU_SCL13ISCL in I²C for CPU interfaceCPU_SDA14I/OSDA in I²C for CPU interfacePWM_CTL15OPWM control signal (Detail description in PW Operation Section)CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_O18OFeedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color GreenB_OSD22IOSD Color Blue	ROM_SCL	10	0	SCL in I ² C for EEPROM interface
CPU_SCL13ISCL in I²C for CPU interfaceCPU_SDA14I/OSDA in I²C for CPU interfacePWM_CTL15OPWM control signal (Detail description in PW Operation Section)CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_O18OFeedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color GreenB_OSD22IOSD Color Blue	ROM_SDA	11	I/O	SDA in I ² C for EEPROM interface
CPU_SDA14I/OSDA in I²C for CPU interfacePWM_CTL15OPWM control signal (Detail description in PW Operation Section)CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_O18OFeedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color RedG_OSD21IOSD Color GreenB_OSD22IOSD Color Blue	GND	12		Ground
PWM_CTL15OPWM control signal (Detail description in PW Operation Section)CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_O18OFeedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color RedG_OSD21IOSD Color GreenB_OSD22IOSD Color Blue	CPU_SCL	13	Ι	SCL in I ² C for CPU interface
CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_O18OFeedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color RedG_OSD21IOSD Color GreenB_OSD22IOSD Color Blue	CPU_SDA	14	I/O	SDA in I ² C for CPU interface
CLK_1M16IFree Running Clock (default: 1MHz)VDD17Power SupplyCLK_1M_O18OFeedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color RedG_OSD21IOSD Color GreenB_OSD22IOSD Color Blue	PWM_CTL	15	0	PWM control signal (Detail description in PWM
VDD17Power SupplyCLK_1M_O18OFeedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color RedG_OSD21IOSD Color GreenB_OSD22IOSD Color Blue	_			Operation Section)
CLK_1M_O18OFeedback of free Running ClockRESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color RedG_OSD21IOSD Color GreenB_OSD22IOSD Color Blue	CLK_1M	16	I	Free Running Clock (default: 1MHz)
RESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color RedG_OSD21IOSD Color GreenB_OSD22IOSD Color Blue	VDD	17		Power Supply
RESET_B19ISystem Reset (active LOW)R_OSD20IOSD Color RedG_OSD21IOSD Color GreenB_OSD22IOSD Color Blue	CLK_1M_O	18	0	
G_OSD 21 I OSD Color Green B_OSD 22 I OSD Color Blue		19	I	
G_OSD 21 I OSD Color Green B_OSD 22 I OSD Color Blue		20	Ι	
	G_OSD	21	Ι	OSD Color Green
	B OSD	22	Ι	OSD Color Blue
EN_OSD 23 I OSD Mixer Enable		23	Ι	OSD Mixer Enable
=0, No OSD output	_			=0, No OSD output
$=1,R_OUT[7:0]= \{R_OSD \text{ repeat } 8 \text{ times}\}$				$=1,R_OUT[7:0]= \{R_OSD \text{ repeat } 8 \text{ times}\}$
$G_OUT[7:0] = \{G_OSD \text{ repeat 8 times }\}$				G_OUT[7:0]= {G_OSD repeat 8 times }
B_OUT[7:0]= {B_OSD repeat 8 times }				B_OUT[7:0]= {B_OSD repeat 8 times }
SCAN_EN 24 I Manufacturing test pin (NC)	SCAN_EN	24	Ι	Manufacturing test pin (NC)
TEST_EN25IManufacturing test pin (NC)	TEST_EN	25	Ι	Manufacturing test pin (NC)
VCLK01 26 I Input Clock 1	VCLK01	26	Ι	Input Clock 1
FCLK0 27 O Input PLL Feedback Clock	FCLK0	27	0	Input PLL Feedback Clock
VCLK00 28 I Input Clock 0	VCLK00	28	Ι	Input Clock 0
FCLK1 29 O Output PLL Feedback Clock	FCLK1	29	0	Output PLL Feedback Clock
VCLK1 30 I Output PLL Output Clock	VCLK1	30	Ι	Output PLL Output Clock
HSYNC_O 31 O Output HSYNC (the polarity is programmable throu	HSYNC_O	31	0	Output HSYNC (the polarity is programmable through
CPU, default is active low)				CPU, default is active low)
VSYNC_O 32 O Output VSYNC (the polarity is programmable throu	VSYNC_O	32	0	Output VSYNC (the polarity is programmable through
CPU, default is active low)				CPU, default is active low)
DCLK_OUT 33 O Output Clock to Control Panel (the polarity	DCLK_OUT	33	0	Output Clock to Control Panel (the polarity is
programmable through CPU)				
DE_OUT 34 O Output Display Enable for Panel (the polarity	DE_OUT	34	0	Output Display Enable for Panel (the polarity is
programmable through CPU, default is active HIGH)				programmable through CPU, default is active HIGH)
GND 35 Ground	GND	35		Ground
VDD 36 Power Supply	VDD	36		Power Supply
R_OUT0_E 37 O Output Color Red Even Pixel (left pixel)		-		

Table 1: SD1010 pin description (sorted by pin number)

		-	
R_OUT1_E	38	0	Output Color Red Even Pixel (left pixel)
R_OUT2_E	39	0	Output Color Red Even Pixel (left pixel)
R_OUT3_E	40	0	Output Color Red Even Pixel (left pixel)
HSYNC_X	41	0	Default HSYNC generated by ASIC (active LOW)
VSYNC_X	42	0	Default VSYNC generated by ASIC (active LOW)
GND	43		Ground
R_OUT4_E	44	0	Output Color Red Even Pixel (left pixel)
VDD	45		Power Supply
VDD	46		Power Supply
R_OUT5_E	47	0	Output Color Red Even Pixel (left pixel)
GND	48		Ground
R_OUT6_E	49	0	Output Color Red Even Pixel (left pixel)
R_OUT7_E	50	0	Output Color Red Even Pixel (left pixel)
GND	51	0	Ground
R_OUT0_O	52	0	Output Color Red Odd Pixel (right pixel)
R_OUT1_O	53	0	Output Color Red Odd Pixel (right pixel)
R_OUT2_O	54	0	Output Color Red Odd Pixel (right pixel)
R_OUT3_O	55	0	Output Color Red Odd Pixel (right pixel)
VDD	56	0	Power Supply
R_OUT4_O	57	0	Output Color Red Odd Pixel (right pixel)
R_OUT5_O	58	0	Output Color Red Odd Pixel (right pixel)
R_OUT6_O	59	0	Output Color Red Odd Pixel (right pixel)
	60	0	
R_OUT7_O			Output Color Red Odd Pixel (right pixel)
GND	61		Ground
G_OUT0_E	62	0	Output Color Green Even Pixel (left pixel)
G_OUT1_E	63	0	Output Color Green Even Pixel (left pixel)
G_OUT2_E	64	0	Output Color Green Even Pixel (left pixel)
G_OUT3_E	65	0	Output Color Green Even Pixel (left pixel)
G_OUT4_E	66	0	Output Color Green Even Pixel (left pixel)
VDD	67		Power Supply
G_OUT5_E	68	0	Output Color Green Even Pixel (left pixel)
G_OUT6_E	69	0	Output Color Green Even Pixel (left pixel)
G_OUT7_E	70	0	Output Color Green Even Pixel (left pixel)
GND	71		Ground
GND	72		Ground
G_OUT0_O	73	0	Output Color Green Odd Pixel (right pixel)
G_OUT1_O	74	0	Output Color Green Odd Pixel (right pixel)
G_OUT2_O	75	0	Output Color Green Odd Pixel (right pixel)
G_OUT3_O	76	0	Output Color Green Odd Pixel (right pixel)
VDD	77		Power Supply
G_OUT4_O	78	0	Output Color Green Odd Pixel (right pixel)
G_OUT5_O	79	0	Output Color Green Odd Pixel (right pixel)
G_OUT6_O	80	0	Output Color Green Odd Pixel (right pixel)
G_OUT7_O	81	0	Output Color Green Odd Pixel (right pixel)
GND	82		Ground
GND	83		Ground
B_OUT0_E	84	0	Output Color Blue Even Pixel (left pixel)
B_OUT1_E	85	0	Output Color Blue Even Pixel (left pixel)
B_OUT2_E	86	0	Output Color Blue Even Pixel (left pixel)
B_OUT3_E	87	0	Output Color Blue Even Pixel (left pixel)
B_OUT4_E	88	0	Output Color Blue Even Pixel (left pixel)
B_OUT5_E	89	0	Output Color Blue Even Pixel (left pixel)
P OUT5 E	89	0	Output Color Blue Even Pixel (left pixel)

B_OUT6_E	90	0	Output Color Blue Even Pixel (left pixel)
VDD	91		Power Supply
VDD	92		Power Supply
B_OUT7_E	93	0	Output Color Blue Even Pixel (left pixel)
GND	94		Ground
B_OUT0_O	95	0	Output Color Blue Odd Pixel (right pixel)
B_OUT1_O	96	0	Output Color Blue Odd Pixel (right pixel)
B_OUT2_O	97	0	Output Color Blue Odd Pixel (right pixel)
B_OUT3_O	98	0	Output Color Blue Odd Pixel (right pixel)
VDD	99		Power Supply
B_OUT4_O	100	0	Output Color Blue Odd Pixel (right pixel)
B_OUT5_O	101	0	Output Color Blue Odd Pixel (right pixel)
B_OUT6_O	101	0	Output Color Blue Odd Pixel (right pixel)
B_OUT7_O	102	0	Output Color Blue Odd Pixel (right pixel)
GND	103	0	Ground
R_IN00	104	Ι	Channel A Data Input Color Red (LSB)
R_IN01	105	I	Channel A Data Input Color Red
R_IN01	100	I	Channel A Data Input Color Red
R_IN02 R_IN03	107	I	Channel A Data Input Color Red
VDD	108	1	
		т	Power Supply
R_IN04	110	I	Channel A Data Input Color Red
R_IN05	111	I	Channel A Data Input Color Red
R_IN06	112	I	Channel A Data Input Color Red
R_IN07	113	I	Channel A Data Input Color Red (MSB)
R_IN10	114	I	Channel B Data Input Color Red (LSB)
R_IN11	115		Channel B Data Input Color Red
			· · ·
GND	116		Ground
R_IN12	116 117	I	Ground Channel B Data Input Color Red
R_IN12 R_IN13	116 117 118		Ground Channel B Data Input Color Red Channel B Data Input Color Red
R_IN12 R_IN13 VDD	116 117 118 119	I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply
R_IN12 R_IN13 VDD R_IN14	116 117 118 119 120	I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red
R_IN12 R_IN13 VDD R_IN14 R_IN15	116 117 118 119 120 121	I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16	116 117 118 119 120 121 122	I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17	116 117 118 119 120 121 122 123	I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16	116 117 118 119 120 121 122 123 124	I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Ground
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN00	116 117 118 119 120 121 122 123 124 125	I I I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red (MSB) Ground Channel A Data Input Color Green (LSB)
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN00 G_IN01	116 117 118 119 120 121 122 123 124 125 126	I I I I I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red (MSB) Ground Channel A Data Input Color Green (LSB) Channel A Data Input Color Green
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN00 G_IN01 G_IN02	116 117 118 119 120 121 122 123 124 125 126 127	I I I I I I I I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red (MSB) Ground Channel A Data Input Color Green (LSB) Channel A Data Input Color Green Channel A Data Input Color Green
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN00 G_IN01 G_IN03	116 117 118 119 120 121 122 123 124 125 126 127 128	I I I I I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red (MSB) Ground Channel A Data Input Color Green (LSB) Channel A Data Input Color Green Channel A Data Input Color Green Channel A Data Input Color Green Channel A Data Input Color Green
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN00 G_IN02 G_IN03	116 117 118 119 120 121 122 123 124 125 126 127 128 129	I I I I I I I I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Green Channel A Data Input Color Green (LSB) Channel A Data Input Color Green Channel A Data Input Color Green Power Supply
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN00 G_IN01 G_IN02 G_IN03 VDD G_IN04	116 117 118 119 120 121 122 123 124 125 126 127 128 129 130	I I I I I I I I I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red (MSB) Ground Channel A Data Input Color Green (LSB) Channel A Data Input Color Green Channel A Data Input Color Green Channel A Data Input Color Green Channel A Data Input Color Green Power Supply Channel A Data Input Color Green
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN00 G_IN01 G_IN02 G_IN03 VDD G_IN04 G_IN05	116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131	I I I I I I I I I I I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red (MSB) Ground Channel A Data Input Color Green (LSB) Channel A Data Input Color Green Channel A Data Input Color Green Channel A Data Input Color Green Channel A Data Input Color Green Power Supply Channel A Data Input Color Green Channel A Data Input Color Green
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN00 G_IN01 G_IN02 G_IN03 VDD G_IN04	116 117 118 119 120 121 122 123 124 125 126 127 128 129 130	I I I I I I I I I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red (MSB) Ground Channel A Data Input Color Green (LSB) Channel A Data Input Color Green Channel A Data Input Color Green Power Supply Channel A Data Input Color Green Channel A Data Input Color Green Sample Clock for ADC 0
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN00 G_IN01 G_IN02 G_IN03 VDD G_IN04 G_IN05 ADC_CLK0 G_IN06	116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133	I I I I I I I I I I I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red (MSB) Ground Channel A Data Input Color Green (LSB) Channel A Data Input Color Green Channel A Data Input Color Green Power Supply Channel A Data Input Color Green Channel A Data Input Color Green Sample Clock for ADC 0 Channel A Data Input Color Green
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN00 G_IN01 G_IN02 G_IN03 VDD G_IN04 G_IN05 ADC_CLK0	116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134	I I I I I I I I I I I I I O	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red (MSB) Ground Channel A Data Input Color Green (LSB) Channel A Data Input Color Green Channel A Data Input Color Green Power Supply Channel A Data Input Color Green Channel A Data Input Color Green Sample Clock for ADC 0
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN00 G_IN01 G_IN02 G_IN03 VDD G_IN04 G_IN05 ADC_CLK0 G_IN06	116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133	I I I I I I I I I I I I I I I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red (MSB) Ground Channel A Data Input Color Green (LSB) Channel A Data Input Color Green Channel A Data Input Color Green Power Supply Channel A Data Input Color Green Channel A Data Input Color Green Sample Clock for ADC 0 Channel A Data Input Color Green
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN00 G_IN01 G_IN02 G_IN03 VDD G_IN04 G_IN05 ADC_CLK0 G_IN07	116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134	I I I I I I I I I I I I I I I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red (MSB) Ground Channel A Data Input Color Green (LSB) Channel A Data Input Color Green Channel A Data Input Color Green Channel A Data Input Color Green Channel A Data Input Color Green Power Supply Channel A Data Input Color Green Channel A Data Input Color Green Sample Clock for ADC 0 Channel A Data Input Color Green (MSB)
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN00 G_IN01 G_IN02 G_IN03 VDD G_IN04 G_IN05 ADC_CLK0 G_IN07 GND	116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135	I I I I I I I I I I I I I I I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red (MSB) Ground Channel A Data Input Color Green (LSB) Channel A Data Input Color Green Channel A Data Input Color Green Channel A Data Input Color Green Channel A Data Input Color Green Power Supply Channel A Data Input Color Green Channel A Data Input Color Green Channel A Data Input Color Green Sample Clock for ADC 0 Channel A Data Input Color Green Channel A Data Input Color Green Sample Clock for ADC 0 Channel A Data Input Color Green (MSB) Ground
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN00 G_IN01 G_IN02 G_IN03 VDD G_IN04 G_IN05 ADC_CLK0 G_IN07 GND G_IN10	116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136	I I I I I I I I I I I I I I I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red (MSB) Ground Channel A Data Input Color Green (LSB) Channel A Data Input Color Green Channel A Data Input Color Green Sample Clock for ADC 0 Channel A Data Input Color Green (MSB) Ground Channel B Data Input Color Green (LSB)
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN00 G_IN01 G_IN02 G_IN03 VDD G_IN04 G_IN05 ADC_CLK0 G_IN07 GND G_IN10 G_IN10	116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137	I I I I I I I I I I I I I I I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red (MSB) Ground Channel A Data Input Color Green (LSB) Channel A Data Input Color Green Channel A Data Input Color Green Power Supply Channel A Data Input Color Green Sample Clock for ADC 0 Channel A Data Input Color Green (MSB) Ground Channel A Data Input Color Green (MSB) Ground Channel B Data Input Color Green (MSB) Ground Channel B Data Input Color Green (LSB)
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN00 G_IN01 G_IN02 G_IN03 VDD G_IN04 G_IN05 ADC_CLK0 G_IN10 G_IN11 ADC_CLK1	116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138	I I I I I I I I I I I I I I I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red (MSB) Ground Channel A Data Input Color Green (LSB) Channel A Data Input Color Green Channel A Data Input Color Green Channel A Data Input Color Green Channel A Data Input Color Green Power Supply Channel A Data Input Color Green Channel B Data Input Color Green (MSB) Ground Channel B Data Input Color Green Sample Clock for ADC 1
R_IN12 R_IN13 VDD R_IN14 R_IN15 R_IN16 R_IN17 GND G_IN01 G_IN02 G_IN03 VDD G_IN04 G_IN05 ADC_CLK0 G_IN10 G_IN11 ADC_CLK1 G_IN12	116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139	I I I I I I I I I I I I I I I I I I I	Ground Channel B Data Input Color Red Channel B Data Input Color Red Power Supply Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red Channel B Data Input Color Red (MSB) Ground Channel A Data Input Color Green (LSB) Channel A Data Input Color Green Channel A Data Input Color Green Channel A Data Input Color Green Channel A Data Input Color Green Power Supply Channel A Data Input Color Green Channel B Data Input Color Green (MSB) Ground Channel B Data Input Color Green Sample Clock for ADC 1 Channel B Data Input Color Green

SmartASIC Confidential

G_IN14	142	Ι	Channel B Data Input Color Green
G_IN15	143	Ι	Channel B Data Input Color Green
G_IN16	144	Ι	Channel B Data Input Color Green
G_IN17	145	Ι	Channel B Data Input Color Green (MSB)
GND	146		Ground
B_IN00	147	Ι	Channel A Data Input Color Blue (LSB)
B_IN01	148	Ι	Channel A Data Input Color Blue
B_IN02	149	Ι	Channel A Data Input Color Blue
VDD	150		Power Supply
B_IN03	151	Ι	Channel A Data Input Color Blue
B_IN04	152	Ι	Channel A Data Input Color Blue
B_IN05	153	Ι	Channel A Data Input Color Blue
B_IN06	154	Ι	Channel A Data Input Color Blue
B_IN07	155	Ι	Channel A Data Input Color Blue (MSB)
GND	156		Ground
HSYNC_I	157	Ι	Input HSYNC (any polarity)
VSYNC_I	158	Ι	Input VSYNC (any polarity)
DE_IN	159	Ι	DE input for digital interface
VDD	160		Power Supply

Symbol	PIN Number	I/O	Description
R_IN00	105	Ι	Channel A Data Input Color Red (LSB)
R_IN01	106	Ι	Channel A Data Input Color Red
R_IN02	107	Ι	Channel A Data Input Color Red
R_IN03	108	Ι	Channel A Data Input Color Red
R_IN04	110	Ι	Channel A Data Input Color Red
R_IN05	111	Ι	Channel A Data Input Color Red
R_IN06	112	Ι	Channel A Data Input Color Red
R_IN07	113	Ι	Channel A Data Input Color Red (MSB)
R_IN10	114	Ι	Channel B Data Input Color Red (LSB)
R_IN11	115	Ι	Channel B Data Input Color Red
R_IN12	117	Ι	Channel B Data Input Color Red
R_IN13	118	Ι	Channel B Data Input Color Red
R_IN14	120	Ι	Channel B Data Input Color Red
R_IN15	121	Ι	Channel B Data Input Color Red
R_IN16	122	Ι	Channel B Data Input Color Red
R_IN17	123	Ι	Channel B Data Input Color Red (MSB)
G_IN00	125	Ι	Channel A Data Input Color Green (LSB)
G_IN01	126	Ι	Channel A Data Input Color Green
G_IN02	127	I	Channel A Data Input Color Green
G IN03	128		Channel A Data Input Color Green
G_IN04	130	I	Channel A Data Input Color Green
G IN05	131	I	Channel A Data Input Color Green
G_IN06	133	Ι	Channel A Data Input Color Green
G_IN07	134	I	Channel A Data Input Color Green (MSB)
G_IN10	136	Ι	Channel B Data Input Color Green (LSB)
G_IN11	137	Ι	Channel B Data Input Color Green
 G_IN12	139	Ι	Channel B Data Input Color Green
	140	Ι	Channel B Data Input Color Green
G_IN14	142	Ι	Channel B Data Input Color Green
 G_IN15	143	Ι	Channel B Data Input Color Green
 G_IN16	144	Ι	Channel B Data Input Color Green
G_IN17	145	Ι	Channel B Data Input Color Green (MSB)
B_IN00	147	I	Channel A Data Input Color Blue (LSB)
B_IN01	148	I	Channel A Data Input Color Blue
B_IN02	149	I	Channel A Data Input Color Blue
B_IN03	151	I	Channel A Data Input Color Blue
B IN04	151	I	Channel A Data Input Color Blue
B_IN05	153	I	Channel A Data Input Color Blue
B_IN06	155	I	Channel A Data Input Color Blue
B_IN07	155	I	Channel A Data Input Color Blue (MSB)
B_IN10	1	I	Channel B Data Input Color Blue (LSB)
B_IN11	2	I	Channel B Data Input Color Blue
B_IN12	3	I	Channel B Data Input Color Blue
B_IN13	4	I	Channel B Data Input Color Blue
B_IN14	6	I	Channel B Data Input Color Blue
B_IN15	7	I	Channel B Data Input Color Blue
B_IN16	8	I	Channel B Data Input Color Blue
B_IN17	9	I	Channel B Data Input Color Blue (MSB)
<u> </u>	,	1	Chamier D Duta input Color Dide (110D)

Table 2: SD1010 pin description (sorted by function)

November, 1999 Revision B

	1		
DATA_SEL	5	Ι	Indicate Channel A or Channel B contains valid input
			data:
			1: data in Channel A is valid
			0: data in Channel B is valid
	1 - 7	т	
HSYNC_I	157	I	Input HSYNC (any polarity)
VSYNC_I	158	I	Input VSYNC (any polarity)
DE_IN	159	Ι	DE input for digital interface
	132	0	Sample Clock for ADC 0
ADC_CLK0		0	Sample Clock for ADC 0
ADC_CLK1	138	0	Sample Clock for ADC 1
R_OUT0_E	37	0	Output Color Red Even Pixel (left pixel)
R_OUT1_E	38	0	Output Color Red Even Pixel (left pixel)
R_OUT2_E	39	0	Output Color Red Even Pixel (left pixel)
R_OUT3_E	40	0	Output Color Red Even Pixel (left pixel)
R_OUT4_E	40	0	Output Color Red Even Pixel (left pixel)
R_OUT5_E	44 47	0	Output Color Red Even Pixel (left pixel)
R_OUT6_E	47	0	Output Color Red Even Fixel (left pixel)
R OUT7 E	50	0	Output Color Red Even Pixel (left pixel)
R_OUT0_O	52	0	Output Color Red Odd Pixel (right pixel)
R_OUT1_0	53	0	Output Color Red Odd Pixel (right pixel)
R_OUT2_O	54	0	Output Color Red Odd Pixel (right pixel)
R_OUT3_O	55	0	Output Color Red Odd Pixel (right pixel)
R_OUT4_O	57	0	Output Color Red Odd Pixel (right pixel)
R_OUT5_O	58	0	Output Color Red Odd Pixel (right pixel)
R_OUT6_O	59	0	Output Color Red Odd Pixel (right pixel)
R_OUT7_O	60	0	Output Color Red Odd Pixel (right pixel)
		0	
G_OUT0_E	62	0	Output Color Green Even Pixel (left pixel)
G_OUT1_E	63	0	Output Color Green Even Pixel (left pixel)
G_OUT2_E	64	0	Output Color Green Even Pixel (left pixel)
G_OUT3_E	65	0	Output Color Green Even Pixel (left pixel)
G_OUT4_E	66	0	Output Color Green Even Pixel (left pixel)
G_OUT5_E	68	0	Output Color Green Even Pixel (left pixel)
G_OUT6_E	69	0	Output Color Green Even Pixel (left pixel)
G_OUT7_E	70	0	Output Color Green Even Pixel (left pixel)
G_OUT0_O	73	0	Output Color Green Odd Pixel (right pixel)
G_OUT1_O	74	0	Output Color Green Odd Pixel (right pixel)
G_OUT2_O	75	0	Output Color Green Odd Pixel (right pixel)
G_OUT3_O	76	0	Output Color Green Odd Pixel (right pixel)
G_OUT4_O	78	0	Output Color Green Odd Pixel (right pixel)
G_OUT5_O	79	0	Output Color Green Odd Pixel (right pixel)
G_OUT6_O	80	0	Output Color Green Odd Pixel (right pixel)
G_OUT7_O	81	0	Output Color Green Odd Pixel (right pixel)
B_OUT0_E	84	0	Output Color Blue Even Pixel (left pixel)
B_OUT1_E	85	0	Output Color Blue Even Pixel (left pixel)
B_OUT2_E	86	0	Output Color Blue Even Pixel (left pixel)
B_OUT3_E	87	0	Output Color Blue Even Pixel (left pixel)
B_OUT4_E	88	0	Output Color Blue Even Pixel (left pixel)

		-	
B_OUT5_E	89	0	Output Color Blue Even Pixel (left pixel)
B_OUT6_E	90	0	Output Color Blue Even Pixel (left pixel)
B_OUT7_E	93	0	Output Color Blue Even Pixel (left pixel)
B OUTO O	95	0	Output Color Blue Odd Pixel (right pixel)
B_OUT1_O	96	0	Output Color Blue Odd Pixel (right pixel)
B_OUT2_O	97	0	Output Color Blue Odd Pixel (right pixel)
B_OUT3_O	98	0	Output Color Blue Odd Pixel (right pixel)
B_OUT4_O	100	0	Output Color Blue Odd Pixel (right pixel)
B_OUT5_O	100	0	Output Color Blue Odd Pixel (right pixel)
B_OUT6_O	101	0	Output Color Blue Odd Pixel (right pixel)
		-	Output Color Blue Odd Pixel (right pixel)
B_OUT7_O	103	0	Output Color Blue Odd Pixel (fight pixel)
		-	
HSYNC_O	31	0	Output HSYNC (the polarity is programmable
		-	through CPU, default is active low)
VSYNC_O	32	0	Output VSYNC (the polarity is programmable
			through CPU, default is active low)
DCLK_OUT	33	0	Output Clock to Control Panel (the polarity is
			programmable through CPU)
DE_OUT	34	0	Output Display Enable for Panel (the polarity is
			programmable through CPU, default is active HIGH)
VCLK01	26	Ι	Input Clock 1
FCLK0	27	0	Input PLL Feedback Clock
VCLK00	28		Input Clock 0
FCLK1	29	0	Output PLL Feedback Clock
VCLK1	30	I	Output PLL Output Clock
V CLINI	50	-	output The output clock
ROM_SCL	10	0	SCL in I ² C for EEPROM interface
ROM_SDA	11	I/O	SDA in I ² C for EEPROM interface
KOM_SDA	11	1/0	SDA III I C IOI EEF KOW IIIteriace
CDU CCI	12	т	SCL in I ² C for CPU interface
CPU_SCL	13	I	
CPU_SDA	14	I/O	SDA in I ² C for CPU interface
		-	
PWM_CTL	15	0	PWM control signal (Detail description in PWM
			Operation Section)
CLK_1M	16	Ι	Free Running Clock (default: 1MHz)
CLK_1M_O	18	0	Feedback of free Running Clock
RESET_B	19	Ι	System Reset (active LOW)
HSYNC_X	41	0	Default HSYNC generated by ASIC (active LOW)
VSYNC_X	42	0	Default VSYNC generated by ASIC (active LOW)
R_OSD	20	Ι	OSD Color Red
G_OSD	20	I	OSD Color Green
B_OSD	22	I	OSD Color Blue
EN_OSD	22	I	OSD Mixer Enable
En_OSD	23	1	=0, No OSD output
			=0, No OSD output =1,R_OUT[7:0]= {R_OSD repeat 8 times}
			$G_{OUT}[7:0] = \{G_{OSD} \text{ repeat 8 times} \}$
			$B_OUT[7:0] = \{B_OSD \text{ repeat 8 times }\}$
			$\mathbf{D}_{\mathbf{O}} = \{\mathbf{D}_{\mathbf{O}} \in \mathbf{D} \mid \mathbf{D}_{\mathbf{O}} \in \mathbf{D} \}$

SCAN EN	24	Ι	Manufacturing test pin (NC)
TEST_EN	25	I	Manufacturing test pin (NC)
	25	1	
VDD	17		Power Supply
VDD	36		Power Supply
VDD	45		Power Supply
VDD	46		Power Supply
VDD	56		Power Supply
VDD	67		Power Supply
VDD	77		Power Supply
VDD	91		Power Supply
VDD	92		Power Supply
VDD	99		Power Supply
VDD	109		Power Supply
VDD	119		Power Supply
VDD	129		Power Supply
VDD	141		Power Supply
VDD	150		Power Supply
VDD	160		Power Supply
			372 6
GND	12		Ground
GND	35		Ground
GND	43		Ground
GND	48		Ground
GND	51		Ground
GND	61		Ground
GND	71		Ground
GND	72		Ground
GND	82		Ground
GND	83		Ground
GND	94		Ground
GND	104		Ground
GND	116		Ground
GND	124		Ground
GND	135		Ground
GND	146		Ground
GND	156		Ground

3. FUNCTIONAL DESCRIPTION

The SD1010 has the following major function blocks:

- 1. Input mode detection and auto calibration block
- 2. Buffer memory and read/write control block
- 3. Image scaling, interpolation and dithering block
- 4. OSD mixer and LCD interface block
- 5. EEPROM interface block
- 6. CPU interface block

The following sections will describe the functionality of these blocks.

Input mode detection & auto calibration block Supported input modes 3.1.

3.1.1.

SD1010 can handle up to 14 different input modes. For SD1010, an input mode is defined by its horizontal resolution with its vertical resolution. The input modes with the same horizontal and vertical resolution but with different frame rates are still considered as one single input mode. In the default EEPROM setup, SD1010 accepts the following seven input video modes:

- 1. 640 x 350
- 2. 640 x 400
- 3. 720 x 400
- 4. 640 x 480 (VGA)
- 5. 800 x 600 (SVGA)
- 6. 832 x 624 (MAC)
- 7. 1024 x 768 (XGA)

Users can easily change the definitions of the acceptable input modes by adjusting the values in the appropriate EEPROM entries. There is no frame rate restriction on the input modes. However, since the output signal is synchronized with the input signal at the same refresh rate, the input refresh rate has to be within the acceptable range of the LCD panel.

The user-defined video modes can be defined by storing appropriate timing information in the EEPROM. Detail definitions of the EEPROM entries are described in Section 3.5.2.

3.1.2. Input mode detection and frequency detection

The SD1010 can automatically detect the mode of the input signal without any user adjustment or driver running on the PC host or external CPU. This block automatically detects polarity of input synchronization and the sizes of back porch, valid data window and the synchronization pulse width in both vertical and horizontal directions. The size information is then used not only to decide the input resolution, to generate the frequency divider for the input PLL, to lock the PLL output clock with HSYNC, but also to automatically scale the image to full screen and to synchronize the output signal with the input signal.

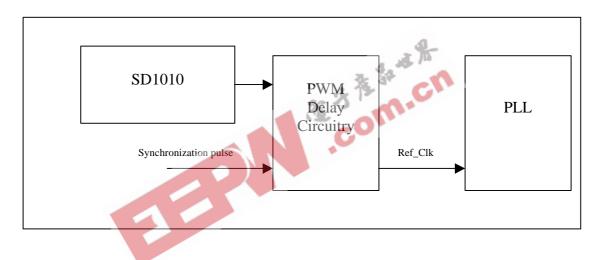
The detection logic is always active to automatically detect any changes to the input mode. Users can manually change the input mode information at run time through the CPU interface. Detailed operation of the CPU interface is described in Section 3.6. "CPU Interface".

Mode detection and frequency detection can be independently turned ON or OFF by the external CPU. This feature allows system customers to have better control of the mode-detection and frequency detection process. When the detection is turned OFF, the external CPU can change the input mode and frequency definitions.

4

3.1.3. Phase calibration

The SD1010 can automatically calibrate the phase of the sample clock in order to preserve the bandwidth of the input signal and to get the best quality. The SD1010 implements a proprietary image quality function. During the auto-calibration process, the SD1010 continues to search for the best phase to optimize the image quality.


The output image may display some jitter and blurring during the auto-calibration process, and the image will become crisp and sharp once the optimum phase is found. User can change the sampling clock phase value through the external CPU. Detailed operation of the CPU interface is described in Section 3.6. "CPU Interface".

The phase calibration process can be delayed and even disabled by the external CPU if the system designer wants to have his/her own implementation. The phase calibration can be independently turned ON or OFF by the external CPU. When the calibration is turned OFF, the external CPU can change the input mode and frequency definitions.

3.1.4. PWM operation

The SD1010 implements a unique algorithm to adjust the phase of the A/D converter's sampling clock. An external delay circuit is required to compliment the SD1010 for the phase-calibration process. The SD1010 generates a Pulse-Width Modulated (PWM) signal to the external delay circuit. The delay circuit should insert a certain amount of time delay synchronization pulse based upon the width of the PWM signal. A brief circuit diagram for the PWM is shown in Figure 3.

The PWM signal from the SD1010 is a periodical signal with a period that is 1023 times the period of the free-running clock connected to the pin "CLK_1M". System manufacturers may select any frequency for the free running clock. The default clock frequency is 1MHz. System manufacturers also decide the unit delay for the external delay circuit. The delay information is stored in the EEPROM. When the SD1010 wants to delay the synchronization pulse for N units of delay, it will output the PWM with the high time equal to (N * the period of the free-running clock), and with low time equal to (1023-N)* the period of the free-running clock. When N=1023, the PWM signal stays high all the time, and when N=0, the PWM signal is always low.

Figure 3: SD1010 PWM circuitry block diagram

3.1.5. Free Running Clock

As described in previous section, a free-running clock is needed for the SD1010. This clock is used for many of the SD1010's internal operations. PWM operation is one of them. System manufacturers can select the frequency of the free-running clock, and the default clock frequency is 1MHz. System manufacturers can use an oscillator to generate the free-running clock, and feed that clock directly to the pin "CLK_1M", or use a crystal connecting to "CLK_1M" and "CLK_1M_O".

3.2. Buffer memory and read/write control block

The SD1010 uses internal buffer memory to store a portion of the input image for image scaling and output synchronization. No external memory buffer is needed for the SD1010. The write control logic ensures the input data are stored into the right area of the buffer memory, and the read control logic is responsible to fetch the data from the buffer memory from the correct area and at the correct timing sequence. With the precise timing control of the write and read logic, the output image is appropriately scaled to the full screen, and the output signal is perfectly synchronized with the input signals.

3.3. Image scaling, interpolation and dithering block

The SD1010 supports both automatic image scaling and interpolation.

3.3.1. **Image scaling**

The SD1010 supports several different input modes, and the input image may have different sizes. It is essential to support automatic image scaling so that the input image is always displayed to the full screen regardless the input mode. The SD1010 scales the images in both horizontal and vertical directions. It calculates the correct scaling ratio for both directions based upon the LCD panel resolution and the input mode and timing information produced by the "Input mode detection & auto calibration" block. The scaling ratio is re-adjusted whenever a different input mode is detected. The ratio is then fed to the buffer memory read control logic to fetch the image data with the right sequence and timing. Some of the image data may be read 法子院部長 more than once to achieve the scaling effect.

3.3.2. **Image interpolation**

The SD1010 supports image interpolation to achieve better image quality. A basic image scaling algorithm replicates the input images to achieve the scaling effect. The replication scheme usually results in a poor image quality. The SD1010 implements a proprietary interpolation algorithm to improve the image quality. The programmable interpolation is implemented with a 256-entry mapping table in the EEPROM to allow system users to adjust the bi-linear interpolation parameters to control the sharpness and smoothness quality of the image. In the default setting, the mapping table contains a straight line of slope equal to 1, i.e. the data in entry N equal to the value N. If the mapping table contains a line of slope equal to 2, then the output image will be a bit sharper than the image generated by a table with the default setting. Through an external microcontroller, users can chose among different interpolation algorithm.

3.3.3. Dithering

The SD1010 supports 16.7 million true colors for a 6-bit panel. Two dithering algorithms are implemented and users can chose between them through the external microcontroller. The first one is area-based dithering, and the second one is a framebased frame modulation, which also is called frame rate control. Through the external microcontroller, users can choose among different dithering algorithms.

3.3.4. **Text Enhancement**

In order to generate a good picture, the SD1010 incorporate a proprietary scheme to detect text and non-text picture. Then applying the appropriate process to improve the text image based on the detection of incoming source. By using the text enhancement function correctly, the text image will be looked more pleasant and near perfect after scaled up or down. Users can achieve a preferred image by changing the settings in "text control" register.

3.3.5. Sharpness Enhancement

No matter how many times the original image got enlarged or shrunk by the internal interpolator. With the embedded powerful DSP arrays, SD1010 always can enhance the overall image sharpness (edge) to different degree for the various requirements. The sharpness can be adjusted bi-directionally which means either going sharper or softer to certain point set by the user. It's easy to activate the sharpness enhancement by program "sharpness control" register.

3.4. OSD mixer and LCD interface

At the output stage, the SD1010 performs the OSD mixer function, and then generates the 24-bit / 48-bit RGB signal to the LCD panel with the correct timing.

A R

3.4.1. OSD mixer

In the OSD mixer block, the SD1010 mixes the normal output RGB signal with the OSD signal. The OSD output data is generated based on the "R_OSD", "G_OSD" and "B_OSD" pins as well as the "OSD Intensity" data in EEPROM entry. When the "EN_OSD" is active high, the OSD is active, and the SD1010 will send the OSD data to the LCD panel. The OSD has 16 different color schemes based on the combinations of the three OSD color pins and the "OSD Intensity" data. When R_OSD=1, and OSD_Intensity=0, the SD1010 will output 128 to the output red channel, R_OUT. When R_OSD=1 and OSD_Intensity=1, the SD1010 will output 255. The same scheme is used for G_OSD to G_OUT and for B_OSD to B_OUT.

As part of the mixer control function, the SD1010 implements three mixing control registers, "OSD R Weight" (38H), "OSD G Weight" (39H), and "OSD B Weight" (3AH). The mixing equation is shown below:

 $\begin{array}{l} R_OUT = (R_OSD) * (OSD \ R \ Weight/255) + R * (1 - OSD \ R \ Weight/255) \\ G_OUT = (G_OSD) * (OSD \ G \ Weight/255) + G * (1 - OSD \ G \ Weight/255) \\ B_OUT = (B_OSD) * (OSD \ B \ Weight/255) + B * (1 - OSD \ B \ Weight/255) \end{array}$

When the weight is 255, the OSD output will overlay on top of the normal output. When the weight is 0, the OSD output is disabled.

3.4.2. LCD interface

The SD1010 support both 24- and 48-bit RGB interfaces with XGA LCD panels from various panel manufacturers. The LCD panel resolution and timing information is stored in the external EEPROM. The information in the EEPROM includes timing related to the output back porch, synchronization pulse width and valid data window. The timing information is used to generate the frequency divider for the output PLL, to lock the PLL output clock with HSYNC for the LCD data clock, and to synchronize the output VSYNC and input VSYNC.

3.5. EEPROM interface

As mentioned in previous sections, the external EEPROM stores crucial information for the SD1010 internal operations. The SD1010 interfaces with the EEPROM through a 2-wire serial interface. The suggested EEPROM device is an industry standard serial-interface EEPROM (24x08). The 2-wire serial interface scheme is briefly described here and a detailed description can be found in public literature.

3.5.1. 2-wire serial interface

The 2-wire serial interface uses 2 wires, SCL and SDA. The SCL is driven by the SD1010 and used mainly as the sampling clock. The SDA is a bi-directional signal and used mainly as a data signal. Figure 4 shows the basic bit definitions of the 2-wire serial interface.

The 2-wire serial interface supports random and sequential read operations. Figures 5 and 6 show the data sequences for random read and sequential read operations.

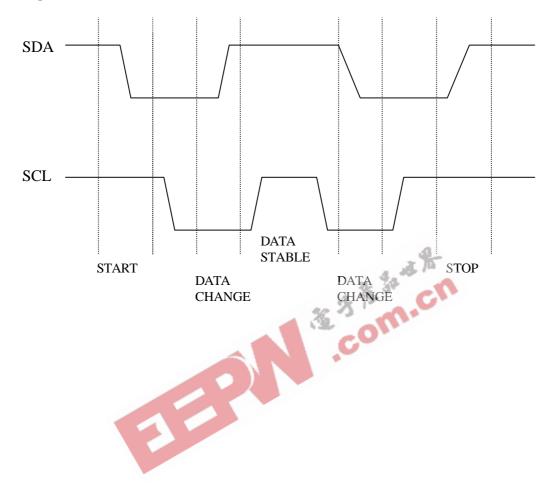
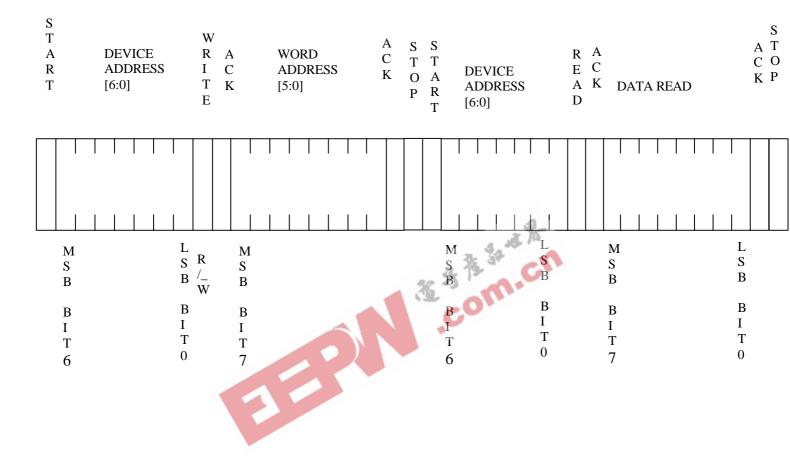



Figure 4: START, STOP AND DATA Definitions in 2-wire serial interface

Figure 5: Data sequence for read access (both single and multiple bytes)

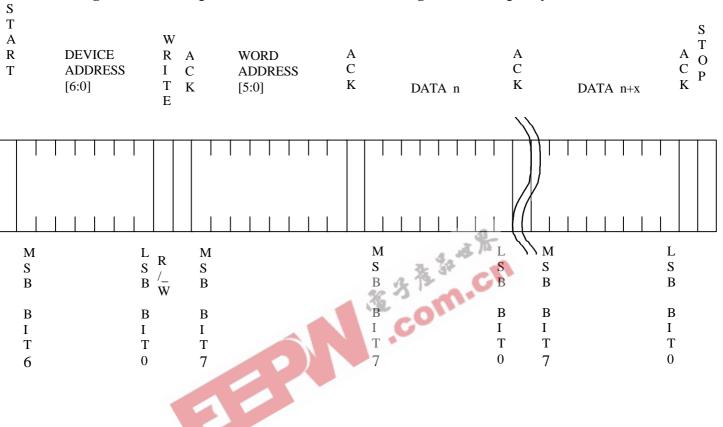


Figure 6: Data sequence for write access (both single and multiple bytes)

3.5.2. EEPROM Contents

The contents of EEPROM are primarily dependent on the specifications of the LCD panel. SmartASIC provides suggested EEPROM contents for LCD panels from various panel manufacturers. The section presents all the entries in the EEPROM, and briefly describes their definitions. This allows the system manufacturers to have their own EEPROM contents to distinguish their monitors.

The EEPROM contents can be partitioned into 15 parts. The first 14 parts are input mode dependent. When the SD1010 detects the input mode, it will then load the information related to the detected mode from the EEPROM. The information in the 15th part is mainly for input mode detection as well as some threshold values for error status indicators.

In the default setting, the SD1010 is set to recognize the following seven modes: 640x350, 640x400, 720x400, 640x480, 800x600, 832x624, and 1024x768 modes. Then the EEPROM will be partitioned as follows:

- Part 1: mode 1: 640x350 mode (in default setting) •
- Part 2: mode 2: 640x400 mode (in default setting) •
- Part 3: mode 3: 720x400 mode (in default setting) •
- Part 4: mode 4: 640x480 mode (in default setting) ٠
- Part 5: mode 5: 800x600 mode (in default setting) •
- Part 6: mode 6: 832x624 mode (in default setting) •
- Part 7: mode 7: 1024x768 mode (in default setting) •
- Part 8: mode 8 •
- Part 9: mode 9 •
- Part 10: mode 10 •
- Part 11: mode 11 •
- Part 12: mode 12 •
- Part 13: mode 13 •
- Part 14: mode 14 •
- Part 14: mode 14 Part 15: input mode detection and scaling related parameters •

VPW1100H 01HLCD VSYNC pulse width 01HVBP1102H 03HLCD VSYNC back porch (including VPW)VBP Source1104HLCD VSYNC back porch (source equivalent) = VBP * Line Expansion and round upTarget Skip1106HIf VBP can not be converted into source evenly, the leftover is converted into number of pixelsVSIZE1108HLCD number of linesVSIZE1108HLCD HSYNC pulse width 00HHPW110AHLCD HSYNC back porch (including HPW) 0DHHBP110CHLCD number of columnsHSIZE110EHLCD number of pixels per line including all porches 11HHTOTAL1212PLCD total number of pixels per line (source equivalent) = sourceSource13HHTOTAL/Line ExpansionLine414H [6:3]Vertical source-to-destination scaling factor 0: one-to-one expansion (no expansion) 1-15: expansion ratio other than one-to-one (expansion)Pixel314H [2:0]Horizontal fogging factor high byteK. Fog Factor815H[7:0]Horizontal fogging factor high byteV. Fog Factor815H[7:0]Horizontal fogging factor high byteInput lines319H[6:4]linesIpput sites319H[6:4]linesIpput sites319H[6:4]linesIpput sites319H[6:4]linesIpput sites319H[2:0]white mut has fewer lines than this value, it is considered as an ERKOR,	Symbol	Width (bits)	Address For 640x350	Description
VBP1101HVBP1102HLCD VSYNC back porch (including VPW)03H= VBP * Line Expansion and round upTarget Skip1106HIf VBP can not be converted into source evenly, the leftover is converted into number of pixelsVSIZE1108HLCD number of linesVSIZE1108HLCD number of linesHPW110AHLCD HSYNC back porch (including HPW)HBP110CHLCD HSYNC back porch (including HPW)HBP110CHLCD total number of pixels per line including all porchesHTOTAL1110HLCD total number of clocks per line (source equivalent) = SourceSource13HHTOTAL/Line ExpansionLine414H [63]Vertical source-to-destination scaling factor 0: one-to-one expansion (no expansion)Pixel314H [2:0]Horizontal source-to-destination scaling factor 0: one-to-one expansion (no expansion)Pixel314H [2:0]Horizontal source-to-destination scaling factor 0: one-to-one expansion (no expansion)1:15: expansion ratio of high byteV. Fog Factor 81:19H(6:4]19H[6:4]Input pixels11:19H(17:0)Horizontal fogging factor low byteV. Fog Factor81:18H(17:0)Vertical fogging factor low byteV. Fog Factor81:19H(6:4]19H[6:4]Input pixels11:19H(16:4]19H[6:4]Input pixels11:19H(16:4]	VPW	11		LCD VSYNC pulse width
VBP1102H 03HLCD VSYNC back porch (including VPW) 03HVBP Source1104HLCD VSYNC back porch (source equivalent) = VBP * Line Expansion and round upTarget Skip1106HIf VBP can not be converted into source evenly, the leftover is converted into number of pixelsVSIZE1108HLCD number of lines09H09H09H09HHPW110AHLCD HSYNC back porch (including HPW) 0DHHBP110CHLCD HSYNC back porch (including HPW)HSIZE110EHLCD number of columasHTOTAL1110HLCD total number of pixels per line including all porches 11HHTOTAL1212H10FHHTOTAL1212H10FHHTOTAL1212HHTOTAL1212HHTOTAL1212HHTOTAL1314H [6:3]Vertical source-to-destination scaling factor 0: one-to-one expansion (no expansion) 1-15: expansion ratio other than one-to-one (expansion)Pixel314H [2:0]Horizontal source-to-destination scaling factor 0: one-to-one expansion (no expansion)H.Fog Factor815H[7:0]Horizontal fogging factor high byteV.Fog Factor816H[7:0]Virtical fogging factor high byteV.Fog Factor811HInput lines19H[6:4]Input lines19H[6:4]Input lines19H[2:0]Input lines19H[2:0]Input lines<				
O3H Characterization VBP Source 11 04H LCD VSYNC back porch (source equivalent) Target Skip 11 06H If VBP can not be converted into source evenly, the leftover is converted into number of pixels VSIZE 11 08H LCD number of lines 09H 09H 09H HPW 11 0AH LCD HSYNC pulse width 0BH 00H 0DH 0DH HSIZE 11 0CH LCD HSYNC back porch (including HPW) 0DH 0DH 0DH 0DH HSIZE 11 0CH LCD total number of pixels per line including all porches 111 10H LCD total number of clocks per line (source equivalent) = Source 13H HTOTAL 12 Line 14H [6:3] Vertical source-to-destination scaling factor 0: one-to-one expansion (no expansion) 1-5: expansion ratio other than one-to-one (expansion) 1-7: expansion ratio other than one-to-one (expansion) 1-7: expansion ratio other than one-to-one (expansion) 1-7: expansior ratio other than one-to-one (expansion) 1-7:	VBP	11		LCD VSYNC back porch (including VPW)
OSH $= VBP * Line Expansion and round upTarget Skip1106HIf VBP can not be converted into source evenly, theleftover is converted into number of pixelsVSIZE1108HLCD number of linesVSIZE1108HLCD HSYNC pulse widthHPW110AHLCD HSYNC back porch (including HPW)HBP110CHLCD HSYNC back porch (including HPW)HBP110CHLCD total number of pixels per line including all porchesHTOTAL1110HLCD total number of pixels per line including all porchesSource13HLCD total number of clocks per line (source equivalent) =13HSource13HLCD total number of clocks per line (source equivalent) =13HFixel314H [6:3]Vertical source-to-destination scaling factor0: one-to-one expansion (no expansion)1-15: expansion ratio other than one-to-one (expansion)Pixel314H [2:0]Horizontal source-to-destination scaling factor0: one-to-one expansion (no expansion)1-7: expansion ratio other than one-to-one (expansion)H. Fog Factor815H[7:0]Herizontal fogging factor low byteVertical fogging factor low byteMinimumInput lines319H[6:4]Ines19H[6:4]linesMaximumInput lines19H[6:4]linesMinimumInput lines19H[6:4]linesMinimumInput lines10H[6:4]linesMinimumInput lines10H[6:4]linesMaximumInput lines19H[6$				
O5H= VBP * Line Expansion and round upTarget Skip1106HIf VBP can not be converted into source evenly, the leftover is converted into number of pixelsVSIZE1108HLCD number of linesVSIZE1108HLCD HSYNC pulse widthHPW110AHLCD HSYNC back porch (including HPW)HBP110CHLCD HSYNC back porch (including HPW)HSIZE110EHLCD total number of pixels per line including all porchesHTOTAL1110HLCD total number of pixels per line (source equivalent) = 13HHTOTAL1212HLCD total number of clocks per line (source equivalent) = 13HHTOTAL1213HVertical source-to-destination scaling factor 	VBP Source	11	04H	LCD VSYNC back porch (source equivalent)
Pixel07Hleftover is converted into number of pixelsVSIZE1108HLCD number of lines09H09H09HHPW110AHLCD HSYNC pulse widthMBP110CHLCD HSYNC back porch (including HPW)0DH0DH0DHHSIZE110CHLCD total number of columns0FH0FH10HHTOTAL1212HSource13HHTOTAL/Line ExpansionLine414H [6:3]Pixel314H [2:0]Pixel314H [2:0]Horizontal source-to-destination scaling factor 0: one-to-one expansion (no expansion) 1-7: expansion ratio other than one-to-one (expansion) 1-7: expansion ratio other than one-to-one (expansion)Pixel314H [2:0]Horizontal fogging factor high byteV. Fog Factor815H[7:0]Horizontal fogging factor ligh byteV. Fog Factor814H[7:0]Vertical fogging factor low byteV. Fog Factor919H[6:4]lines110:8]19H[6:4]Maximum Input pixels319H[6:4]pixels(7:0)19H[2:0]Maximum Input pixels11HMaximum Input pixels12H10:8]12HMaximum Input pixels12H10:8]12HMaximum Input pixels12H10:8]12HMaximum Input pixels12H10:8]12HMaximum Input pixels <td></td> <td></td> <td>05H</td> <td></td>			05H	
VSIZE1108H 09HLCD number of linesHPW110AH 0BHLCD HSYNC pulse width 0BHHBP110CH 0DHLCD HSYNC back porch (including HPW)HSIZE110CH 0FHLCD number of columns 0FHHTOTAL1110H 11HLCD total number of pixels per line including all porches 11HHTOTAL1212H 13HLCD total number of clocks per line (source equivalent) = 0er one-to-one expansion 0er one-to-one expansion (no expansion) 1-15: expansion ratio other than one-to-one (expansion) 1-15: expansion ratio other than one-to-one (expansion) 1-7: expansion ratio other than one-to-one (expansion) <td>Target Skip</td> <td>11</td> <td>06H</td> <td>If VBP can not be converted into source evenly, the</td>	Target Skip	11	06H	If VBP can not be converted into source evenly, the
HPW 11 OAH OBH LCD HSYNC pulse width HBP 11 OCH ODH LCD HSYNC back porch (including HPW) HSIZE 11 OCH OFH LCD number of coluruns HTOTAL 11 IOH ITOTAL LCD total number of pixels per line including all porches 11H HTOTAL 12 I2H ITOTAL/Line Expansion ICD total number of clocks per line (source equivalent) = 13H Line 4 14H [63] Vertical source-to-destination scaling factor 0: one-to-one expansion in the other than one-to-one (expansion) 1-15: expansion ratio other than one-to-one (expansion) 1-7: expansion no e-to-one expansion (no expansion) 1-7: expansion ratio other than one-to-one (expansion) 1-7: expansion ratio other than one-to-one (expansion) 1-	Pixel		07H	leftover is converted into number of pixels
HPW110AH 0BHLCD HSYNC pulse width 0BHHBP110CH 0DHLCD HSYNC back porch (including HPW)HSIZE110EH 0FHLCD number of columnsHTOTAL1110H 11HLCD total number of pixels per line including all porches 11HHTOTAL1212H 11HLCD total number of clocks per line (source equivalent) = HTOTAL/Line ExpansionLine Expansion414H [6:3]Vertical source-to-destination scaling factor 0: one-to-one expansion (no expansion) 1-15: expansion ratio other than one-to-one (expansion) 1-15: expansion ratio other than one-to-one (expansion)Pixel Expansion314H [2:0]Horizontal source-to-destination scaling factor 0: one-to-one expansion (no expansion) 1-7: expansion ratio other than one-to-one (expansion) 1-7: expansion ratio other than one-to-one (expansion)H. Fog Factor I. Fog Factor815H[7:0]Horizontal fogging factor high byte14H [2:0]V. Fog Factor I. Input pixels19H[6:4]Input pixels [10:8]319H[6:4]Input pixels [7:0]312H MMaximum Input pixels319H[6:4]Input pixels [7:0]312H MMaximum Input pixels13HMaximum Input pixels14HMaximum Input pixels19HMaximum Input pixels19HMaximum Input pixels12HMaximum Input pixels12HMaximum Input pixels12HMaximum Input pixels12H </td <td>VSIZE</td> <td>11</td> <td>08H</td> <td>LCD number of lines</td>	VSIZE	11	08H	LCD number of lines
HBP00HBP110CHLCD HSYNC back porch (including HPW)HSIZE110EHLCD number of columnsHTOTAL1110HLCD total number of pixels per line including all porches11H10HLCD total number of clocks per line (source equivalent) =Source13HHTOTAL/Line ExpansionLine414H 16:3]Vertical source-to-destination scaling factor0: one-to-one expansion (no expansion)1-15: expansion0: one-to-one expansion (no expansion)Pixel314H [2:0]Krog Factor815H[7:0]Horizontal source-to-destination scaling factor0: one-to-one expansion no-to-one (expansion)1-7: expansion ratio other than one-to-one (expansion)1-7: exparsion ratio other than one-to-one (expansion) <td></td> <td></td> <td></td> <td></td>				
HBP11OCH ODHLCD HSYNC back porch (including HPW)HSIZE11OEH OFHLCD number of columnsHTOTAL1110H 11HLCD total number of pixels per line including all porchesHTOTAL1212HLCD total number of clocks per line (source equivalent) = 13HHTOTAL1212HLCD total number of clocks per line (source equivalent) = 13HLine Expansion414H [6:3]Vertical source-to-destination scaling factor 0: one-to-one expansion (no expansion) 1-15: expansion ratio other than one-to-one (expansion) 1-7: expansion ratio other than one-to-one (expansion)N. Fog Factor815H[7:0]Vertical fogging factor high byteV. Fog Factor816H[7:0]Vertical fogging factor low byteUpper 3 bits of maximum input pixels19H[6:4]Upper 3 bits of maximum input pixelsMinimum input pixels19H[2:0]When the input has fewer lines than this value, it is consider	HPW	11		LCD HSYNC pulse width
ODHHSIZE11OEHOFHUPHHTOTAL1110HLine1212HSource13HLine414H [6:3]ExpansionVertical source-to-destination scaling factor0:one-to-one expansion (no expansion)1-15:expansion ratio other than one-to-one (expansion)Pixel314H [2:0]Expansion14H [2:0]Horizontal source-to-destination scaling factor0:one-to-one expansion (no expansion)1-7:expansion ratio other than one-to-one (expansion)1-7:expansion ratio other than one-to-one (expansion)1-7:1-7:1-7:expansion ratio other than one-to-one (expansion)1-7:1-7:1-7:10H (2:0]Vertical fogging factor low byteMinimum10H (, A P
HSIZE110EH 0FHLCD number of columnsHTOTAL1110HLCD total number of pixels per line including all porchesIII1212HLCD total number of clocks per line (source equivalent) = 13HHTOTAL1212HLCD total number of clocks per line (source equivalent) = 13HLine414H [6:3]Vertical source-to-destination scaling factor 0: one-to-one expansion (no expansion) 1-15: expansion ratio other than one-to-one (expansion) 1-7: expansion ratio other than one-to-one (expansion) 1-7: expansion ratio other than one-to-one (expansion)Pixel314H [2:0]Horizontal source-to-destination scaling factor 0: one-to-one expansion (no expansion) 1-7: expansion ratio other than one-to-one (expansion)H. Fog Factor815H[7:0]Horizontal fogging factor high byteH. Fog Factor815H[7:0]Horizontal fogging factor low byteV. Fog Factor817H[7:0]Vertical fogging factor low byteMinimum Input lines19H[6:4]Ines[10:8]19H[6:4]InesMinimum input lines19H[2:0]pixels[7:0]19H[2:0]when the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum input pixels812HMaximum input pixels13HMaximum input pixels12HSource31CH [6:4]Source31CH [2:0]Source31CH [2:0]Source31CH [2:0]Source <td>HBP</td> <td>11</td> <td></td> <td>LCD HSYNC back porch (including HPW)</td>	HBP	11		LCD HSYNC back porch (including HPW)
OFHHTOTAL1110HLCD total number of pixels per line including all porchesHTOTAL1212HLCD total number of clocks per line (source equivalent) =Source13HHTOTAL/Line ExpansionLine414H [6:3]Vertical source-to-destination scaling factorO:one-to-one expansion (no expansion)1-15: expansion ratio other than one-to-one (expansion)Pixel314H [2:0]Horizontal source-to-destination scaling factor0:one-to-one expansion (no expansion)1-7: expansion ratio other than one-to-one (expansion)1-Fog Factor815H[7:0]Horizontal fogging factor high byteH. Fog Factor816H[7:0]Horizontal fogging factor low byteV. Fog Factor811H[7:0]Vertical fogging factor low byteV. Fog Factor811H[7:0]Vertical fogging factor low byteMinimumUpper 3 bits of minimum inputUpper 3 bits of minimum inputInput pixels319H[6:4]Minimum81AHMinimum input lines = (VSIZE + VBP)* Line ExpansionMinimum81AHMinimum input lines = (VSIZE + VBP)* Line ExpansionMinimum81BHMaximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum81CH [6:4]Source horizontal size upper 3 bitsSource31CH [2:0]Source horizontal size upper 3 bits				3.12 6
HTOTAL1110H 11HLCD total number of pixels per line including all porches 11HHTOTAL1212HLCD total number of clocks per line (source equivalent) = HTOTAL/Line ExpansionLine414H [6:3]Vertical source-to-destination scaling factor 0: one-to-one expansion (no expansion) 1-15: expansion ratio other than one-to-one (expansion) 0: one-to-one expansion (no expansion) 1-7: expansion ratio other than one-to-one (expansion) 1-7: expansion ratio other than one-to-one expansion 1-7: expansion ratio other than one-to-one expansion 1-7: expansion ratio other than one-to-one expansion 1-7: expansion ratio other than one-to-one expansion <td>HSIZE</td> <td>11</td> <td></td> <td>LCD number of columns</td>	HSIZE	11		LCD number of columns
HTOTAL Source1212H 12H 13HLCD total number of clocks per line (source equivalent) = 				
HTOTAL Source1212H 13HLCD total number of clocks per line (source equivalent) = HTOTAL/Line ExpansionLine Expansion414H [6:3]Vertical source-to-destination scaling factor $0:$ one-to-one expansion (no expansion) $1-15:$ expansion ratio other than one-to-one (expansion) $1-5:$ expansion ratio other than one-to-one (expansion) $1-7:$ expansion ratio other than one-to-one (expansion)H. Fog Factor815H[7:0]Horizontal fogging factor high byteV. Fog Factor816H[7:0]Horizontal fogging factor low byteV. Fog Factor817H[7:0]Vertical fogging factor low byteMinimum Input lines19H[6:4]Upper 3 bits of maximum input pixelsInput pixels319H[2:0]Upper 3 bits of maximum input pixelsInput pixels319H[2:0]When the input lines = (VSIZE + VBP)* Line Expansion When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum Input pixels81BHMaximum input PLL divisor larger than this value.[7:0]Source31CH [6:4]Source vertical size upper 3 bits	HTOTAL	11		LCD total number of pixels per line including all porches
Source13HHTOTAL/Line ExpansionLine414H [6:3]Vertical source-to-destination scaling factor (0: one-to-one expansion (no expansion)) 1-15: expansion ratio other than one-to-one (expansion) 0: one-to-one expansion (no expansion) 1-15: expansion ratio other than one-to-one (expansion) 1-7: expansion ratio other than one-to-one (expansion)H. Fog Factor815H[7:0]Horizontal fogging factor high byteH. Fog Factor816H[7:0]Horizontal fogging factor low byteV. Fog Factor817H[7:0]Vertical fogging factor low byteWinimum Input lines0Upper 3 bits of minimum input pixels[10:8]19H[6:4]Upper 3 bits of maximum input pixelsMinimum Input pixels11[7:0]0When the input lines = (VSIZE + VBP)* Line Expansion When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum Input pixels81BHMaximum input pixels1[7:0]0Source31CH [6:4]Source31CH [6:4]Source1CH [2:0]Source31CH [2:0]Source31CH [2:0]Source vertical size upper 3 bits				
Line Expansion414H [6:3]Vertical source-to-destination scaling factor (): one-to-one expansion (no expansion) 1-15: expansion ratio other than one-to-one (expansion) 1-15: expansion ratio other than one-to-one (expansion)Pixel Expansion314H [2:0]Horizontal source-to-destination scaling factor (): one-to-one expansion (no expansion) (): one-to-one expansion (no expansion)Pixel Expansion314H [2:0]Horizontal source-to-destination scaling factor (): one-to-one expansion (no expansion)H. Fog Factor Fog Factor815H[7:0]Horizontal fogging factor high byteH. Fog Factor S a16H[7:0]Horizontal fogging factor low byteV. Fog Factor Minimum Input lines19H[6:4]Upper 3 bits of minimum input pixelsMaximum Input pixels319H[2:0]Minimum Input pixels319H[2:0]Maximum Input pixels319H[2:0]Maximum Input pixels1AHMinimum input lines = (VSIZE + VBP)* Line Expansion When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum Input pixels81BHMaximum input pixels per line.Auto clock recovery will not set input PLL divisor larger than this value.[7:0]31CH [6:4]Source horizontal size upper 3 bitsSource31CH [2:0]Source vertical size upper 3 bits		12		
Expansion0: one-to-one expansion (no expansion) 1-15: expansion ratio other than one-to-one (expansion)Pixel Expansion314H [2:0]Horizontal source-to-destination scaling factor 0: one-to-one expansion (no expansion) 1-7: expansion ratio other than one-to-one (expansion)H. Fog Factor815H[7:0]Horizontal fogging factor high byteH. Fog Factor816H[7:0]Horizontal fogging factor high byteV. Fog Factor816H[7:0]Vertical fogging factor low byteV. Fog Factor817H[7:0]Vertical fogging factor low byteV. Fog Factor818H[7:0]Vertical fogging factor low byteMinimum Input lines19H[6:4]lines[10:8]19H[2:0]pixelsMinimum Input lines19H[2:0]pixels[10:8]19H[2:0]onside an				
Pixel Expansion1-15: expansion ratio other than one-to-one (expansion)Pixel Expansion314H [2:0]Horizontal source-to-destination scaling factor 0: one-to-one expansion (no expansion) 1-7: expansion ratio other than one-to-one (expansion)H. Fog Factor815H[7:0]Horizontal fogging factor high byteH. Fog Factor816H[7:0]Horizontal fogging factor high byteV. Fog Factor817H[7:0]Vertical fogging factor low byteV. Fog Factor818H[7:0]Vertical fogging factor low byteMinimum Input lines19H[6:4]linesMaximum input lines19H[2:0]Upper 3 bits of maximum input pixelsMinimum input lines19H[2:0]Upper 3 bits of maximum input pixels[7:0]19H[2:0]Upper 3 bits of maximum input pixelsMaximum input lines11AHMinimum input lines = (VSIZE + VBP)* Line Expansion When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum input pixels81BHMaximum input pixels1CH [6:4]Source31CH [6:4]Source31CH [2:0]Source31CH [2:0]Source31CH [2:0]Source31CH [2:0]Source31CH [2:0]Source vertical size upper 3 bits		4	14H [6:3]	
Pixel Expansion314H [2:0]Horizontal source-to-destination scaling factor 0: one-to-one expansion (no expansion) 1-7: expansion ratio other than one-to-one (expansion)H. Fog Factor815H[7:0]Horizontal fogging factor high byteH. Fog Factor816H[7:0]Horizontal fogging factor low byteV. Fog Factor817H[7:0]Vertical fogging factor low byteV. Fog Factor817H[7:0]Vertical fogging factor low byteMinimum Input lines0Upper 3 bits of minimum inputInput pixels319H[6:4]lines[10:8]19H[2:0]pixelsUpper 3 bits of maximum inputInput pixels319H[2:0]Upper 3 bits of maximum input[10:8]19H[2:0]pixelsMinimum input lines1AHMinimum input lines = (VSIZE + VBP)* Line Expansion When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum input pixels81BHMaximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value.[7:0]31CH [6:4]Source horizontal size upper 3 bitsSource31CH [2:0]Source vertical size upper 3 bits	Expansion			
Expansion0: one-to-one expansion (no expansion) 1-7: expansion ratio other than one-to-one (expansion)H. Fog Factor815H[7:0]Horizontal fogging factor high byteH. Fog Factor816H[7:0]Horizontal fogging factor low byteV. Fog Factor817H[7:0]Vertical fogging factor low byteV. Fog Factor818H[7:0]Vertical fogging factor low byteMinimumUpper 3 bits of minimum inputUpper 3 bits of minimum inputInput lines319H[6:4]lines[10:8]19H[2:0]pixelsUpper 3 bits of maximum inputInput lines19H[2:0]infimum input lines = (VSIZE + VBP)* Line Expansion[7:0]19H[2:0]When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum81BHMaximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value.[7:0]31CH [6:4]Source horizontal size upper 3 bits	D' 1	2	1 411 [2 0]	
Image: Hermitian and the second sec		3	14H [2:0]	
H. Fog Factor815H[7:0]Horizontal fogging factor high byteH. Fog Factor816H[7:0]Horizontal fogging factor low byteV. Fog Factor817H[7:0]Vertical fogging factor high byteV. Fog Factor818H[7:0]Vertical fogging factor low byteMinimumUpper 3 bits of minimum inputUpper 3 bits of minimum inputInput lines319H[6:4]lines[10:8]19H[2:0]pixelsUpper 3 bits of maximum inputMaximum81AHMinimum input lines = (VSIZE + VBP)* Line Expansion When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum81BHMaximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value.[7:0]31CH [6:4]Source horizontal size upper 3 bits	Expansion			
H. Fog Factor816H[7:0]Horizontal fogging factor low byteV. Fog Factor817H[7:0]Vertical fogging factor high byteV. Fog Factor818H[7:0]Vertical fogging factor low byteMinimumUpper 3 bits of minimum inputUpper 3 bits of minimum inputInput lines319H[6:4]lines[10:8]19H[2:0]pixels19H[2:0]Maximum19H[2:0]pixels19H[2:0][10:8]19H[2:0]pixels[10:8]19H[2:0]pixels[10:8]19H[2:0]pixels[10:8]19H[2:0]pixels[10:8]19H[6:4]Minimum input lines = (VSIZE + VBP)* Line Expansion When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum input pixels [7:0]81BHMaximum input pixels [7:0]31CH [6:4]Source31CH [6:4]Source horizontal size upper 3 bits	II. Eas Eastan	0	1511[7.0]	
V. Fog Factor817H[7:0]Vertical fogging factor high byteV. Fog Factor818H[7:0]Vertical fogging factor low byteMinimumUpper 3 bits of minimum inputUpper 3 bits of minimum inputInput lines319H[6:4][10:8]19H[2:0]pixelsMaximum19H[2:0]pixels[10:8]19H[2:0]minimum input lines =(VSIZE + VBP)* Line ExpansionWhen the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum81BHMaximum81CH [6:4]Source31CH [6:4]Source31CH [2:0]Source31CH [2:0]Source31CH [2:0]Source31CH [2:0]Source31CH [2:0]Source31CH [2:0]Source31CH [2:0]Source31CH [2:0]Source3Sour				
V. Fog Factor818H[7:0]Vertical fogging factor low byteMinimum Input lines319H[6:4]Upper 3 bits of minimum inputInput lines319H[6:4]linesMaximum Input pixels319H[2:0]pixels[10:8]319H[2:0]pixelsMinimum input lines81AHMinimum input lines = (VSIZE + VBP)* Line Expansion When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum input pixels81BHMaximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value.[7:0]31CH [6:4]Source horizontal size upper 3 bitsSource31CH [2:0]Source vertical size upper 3 bits				
Minimum Input lines319H[6:4]Upper 3 bits of minimum input linesMaximum Input pixels319H[2:0]Upper 3 bits of maximum input pixelsMinimum input lines319H[2:0]Upper 3 bits of maximum input pixelsMinimum input lines81AHMinimum input lines = (VSIZE + VBP)* Line Expansion When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum input pixels81BHMaximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value.Source31CH [6:4]Source vertical size upper 3 bitsSource31CH [2:0]Source vertical size upper 3 bits	-			
Input lines [10:8]319H[6:4]In linesMaximum Input pixels319H[2:0]Upper 3 bits of maximum input pixelsMinimum input lines319H[2:0]pixelsMinimum input lines81AHMinimum input lines = (VSIZE + VBP)* Line Expansion When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum input pixels [7:0]81BHMaximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value.Source31CH [6:4]Source vertical size upper 3 bitsSource31CH [2:0]Source vertical size upper 3 bits		8	18H[7:0]	
[10:8]Upper 3 bits of maximum inputMaximum Input pixels19H[2:0]Upper 3 bits of maximum input[10:8]19H[2:0]pixelsMinimum input lines81AHMinimum input lines = (VSIZE + VBP)* Line Expansion When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum input pixels [7:0]81BHMaximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value.Source31CH [6:4]Source vertical size upper 3 bitsSource31CH [2:0]Source vertical size upper 3 bits		2	1011[2,4]	
Maximum Input pixels319H[2:0]Upper 3 bits of maximum input pixels[10:8]319H[2:0]pixelsMinimum input lines [7:0]81AHMinimum input lines = (VSIZE + VBP)* Line Expansion When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum input pixels [7:0]81BHMaximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value.Source31CH [6:4]Source horizontal size upper 3 bitsSource31CH [2:0]Source vertical size upper 3 bits		5	196[0:4]	lines
Input pixels319H[2:0]pixels[10:8]81AHMinimum input lines = (VSIZE + VBP)* Line Expansion When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum input pixels [7:0]81BHMaximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value.Source31CH [6:4]Source vertical size upper 3 bitsSource31CH [2:0]Source vertical size upper 3 bits				Upper 3 hits of maximum input
[10:8]Image: Construct of the second systemMinimum81AHMinimum input lines = (VSIZE + VBP)* Line Expansion[7:0]When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum81BHMaximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value.[7:0]ICH [6:4]Source horizontal size upper 3 bitsSource31CH [2:0]Source vertical size upper 3 bits		3	19812.01	- 1
Minimum input lines81AHMinimum input lines = (VSIZE + VBP)* Line Expansion When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum input pixels [7:0]81BHMaximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value.Source31CH [6:4]Source vertical size upper 3 bitsSource31CH [2:0]Source vertical size upper 3 bits		5	1911[2.0]	
input lines [7:0](VSIZE + VBP)* Line Expansion When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum81BHMaximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value.[7:0]1CH [6:4]Source horizontal size upper 3 bitsSource31CH [2:0]Source vertical size upper 3 bits		8	1AH	Minimum input lines –
[7:0]When the input has fewer lines than this value, it is considered as an ERROR, and INPUT_X status bit will be HIGH.Maximum81BHMaximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value.[7:0]1CH [6:4]Source horizontal size upper 3 bitsSource31CH [2:0]Source vertical size upper 3 bits		0	1711	±
Maximum input pixels81BHMaximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value.Source31CH [6:4]Source horizontal size upper 3 bitsSource31CH [2:0]Source vertical size upper 3 bits				
Maximum 8 1BH Maximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value. [7:0] -	[,.0]			
Maximum 8 1BH Maximum input pixels per line. Auto clock recovery will not set input PLL divisor larger than this value. [7:0]				
input pixels not set input PLL divisor larger than this value. [7:0] 1CH [6:4] Source 3 HSIZE[10:8] 1CH [2:0] Source 3 1CH [2:0] Source vertical size upper 3 bits	Maximum	8	1BH	
[7:0] Source Source 3 HSIZE[10:8] ICH [6:4] Source 3 1CH [2:0] Source vertical size upper 3 bits		-		
Source 3 1CH [6:4] Source horizontal size upper 3 bits HSIZE[10:8] 3 1CH [2:0] Source vertical size upper 3 bits Source 3 1CH [2:0] Source vertical size upper 3 bits				
HSIZE[10:8] Source Source 3 1CH [2:0] Source vertical size upper 3 bits		3	1CH [6:4]	Source horizontal size upper 3 bits
Source 3 1CH [2:0] Source vertical size upper 3 bits				**
		3	1CH [2:0]	Source vertical size upper 3 bits
	November 100	00	Cras	artASIC Confidential 24

Part 1-14: Input Mode Dependent Data

VSIZE[10:8]			
Source	8	1DH	Source horizontal size lower 8 bits
HSIZE[7:0]			
Source	8	1EH	Source vertical size lower 8 bits
VSIZE[7:0]			
Check sum	8	1FH	Sum of above 31 bytes (keep lower 8 bits only)

Mode	Address Range
640x400	20H
	3FH
720x400	40H
	5FH
640x480	60H
	7FH
800x600	80H
	9FH
832x624	A0H BFH
	BFH
1024x768	СОН
	DFH
User define	EOH
Mode 1	FFH
User define	100H
Mode 2	11FH
User define	120H
Mode 3	13FH
User define	140H
Mode 4	15FH
User define	160H
Mode 5	17FH
User define	180H
Mode 6	19FH
User define	1A0H
Mode 7	1BFH

Part 15: Input Mode Detection Data

Symbol	Width (bits)	Address	Description	
Control byte 0	8	200H	Bit 6 – bit 0 : device ID for external CPU access Bit 7: 0: select internal generated H/V SYNC 1: select external input H/V SYNC	
Control byte 1	8	201H	Bit0: 0: disable automatic input gain control 1: enable automatic input gain control Bit1: 0: enable input H/V SYNC polarity control (make input SYNC positive polarity) 1: bypass input H/V SYNC polarity control	

			Bit2: 0: single pixel input
			1: dual pixel input
			Bit3: 0: disable digital input
			1: enable digital input
			Bit4: 0: YUV input format is unsigned (128 offset)
			1: YUV input format is signed
			Bit5: 0: RGB input for video mode
			1: YUV input for video mode
			Bit6: 0: disable video input
			1: enable video input
			Bit7: 0: disable decimation support
			1: enable decimation support
Control bosts 2	8	20211	
Control byte 2	8	202H	Bit 0: 0: don't invert input odd/even field indicator
			1: invert input odd/even field indicator
			Bit 1: 0: disable half clock mode for dual pixel input
			1: enable half clock mode for dual pixel input
			Bit 2: 0: disable BY2 for auto calibration
			1: enable BY 2 for auto calibration
			Bit 3: 0: disable BY4 for auto calibration
			1: enable BY 4 for auto calibration
			Bit 4: 0: disable BY8 for auto calibration
			1: enable BY 8 for auto calibration
			Bit7-5: output clock phase adjustment, larger number
			gives larger phase delay.
			gives larger phase delay.
Mode 640x350	2	203H[5:4]	The polarity of input synchronization signals.
Sync Polarity	_	20011[0.1]	Bit 0 is for VSYNC and bit 1 is for HSYNC
Res0 threshold	3	203H[2:0]	Upper bound of the line number for 640x350 mode
[10:8]		20311[2.0]	opper bound of the fine number for 040x330 mode
Res0 threshold	8	204H	Upper bound of the line number for 640x350 mode, and
	0	20411	
[7:0]		205115 41	lower bound for 640x400
Mode 640x400	2	205H[5:4]	The polarity of input synchronization signals.
Sync Polarity			Bit 0 is for VSYNC and bit 1 is for HSYNC
Res1 threshold	3	205H[2:0]	Upper bound of the line number for 640x400 mode
[10:8]			
Res1 threshold	8	206H	Upper bound of the line number for 640x400 mode, and
[7:0]			lower bound for 720x400
Mode 720x400	2	207H[5:4]	The polarity of input synchronization signals.
Sync Polarity		[]	Bit 0 is for VSYNC and bit 1 is for HSYNC
Res2 threshold	3	207H[2:0]	Upper bound of the line number for 720x400 mode
[10:8]	5	20/11[2.0]	opper bound of the fine number for 720x400 mode
	0	20011	Unner hound of the line number for 720 w 400 mede and
Res2 threshold	8	208H	Upper bound of the line number for 720x400 mode, and
[7:0]		• • • • • • • •	lower bound for 640x480
Mode 640x480	2	209H[5:4]	The polarity of input synchronization signals.
Sync Polarity			Bit 0 is for VSYNC and bit 1 is for HSYNC
Res3 threshold	3	209H[2:0]	Upper bound of the line number for 640x480 mode
[10:8]			
Res3 threshold	8	20AH	Upper bound of the line number for 640x480 mode, and
[7:0]			lower bound for 800x600
Mode 800x600	2	20BH[5:4]	The polarity of input synchronization signals.
Sync Polarity	-	20211[2.7]	Bit 0 is for VSYNC and bit 1 is for HSYNC
Res4 threshold	3	20BH[2:0]	Upper bound of the line number for 800x600 mode
	5	20011[2.0]	opper bound of the fille number for 800x000 mode
[10:8]	8	20011	Upper bound of the line number for 200-600 mede
Res4 threshold	ð	20CH	Upper bound of the line number for 800x600 mode, and

[7:0]			lower bound for 832x624
Mode 832x624	2	20DH[5:4]	The polarity of input synchronization signals.
Sync Polarity	-	20011[011]	Bit 0 is for VSYNC and bit 1 is for HSYNC
Res5 threshold	3	20DH[2:0]	Upper bound of the line number for 832x624 mode
[10:8]	5	20011[2:0]	opport bound of the fine number for 052/02 (mode
Res5 threshold	8	20EH	Upper bound of the line number for 832x624 mode, and
[7:0]	0	20211	lower bound for 1024x768
Mode 1024x768	2	20FH[5:4]	The polarity of input synchronization signals.
	2	2066[3.4]	Bit 0 is for VSYNC and bit 1 is for HSYNC
Sync Polarity Res6 threshold	3	20FH[2:0]	
	5	2066[2:0]	Upper bound of the line number for 1024x768 mode
[10:8]	0	21011	
Res6 threshold	8	210H	Upper bound of the line number for 1024x768 mode.
[7:0]	2	0111115 41	
Reserve mode 1	2	211H[5:4]	The polarity of input synchronization signals.
Sync Polarity			Bit 0 is for VSYNC and bit 1 is for HSYNC
Reserve mode 1	3	211H[2:0]	Resolution threshold for reserve mode 1
Res threshold [10:8]			A
Reserve mode 1	8	212H	Resolution threshold for reserve mode 1.
Res threshold [7:0]			A
Reserve mode 2	2	213H[5:4]	The polarity of input synchronization signals.
Sync Polarity			Bit 0 is for VSYNC and bit 1 is for HSYNC
Reserve mode 2	3	213H[2:0]	Resolution threshold for reserve mode 2
Res threshold [10:8]			C. C.
Reserve mode 2	8	214H	Resolution threshold for reserve mode 2.
Res threshold [7:0]			
Reserve mode 3	2	215H[5:4]	The polarity of input synchronization signals.
Sync Polarity			Bit 0 is for VSYNC and bit 1 is for HSYNC
Reserve mode 3	3	215H[2:0]	Resolution threshold for reserve mode 3
Res threshold [10:8]			
Reserve mode 3	8	216H	Resolution threshold for reserve mode3.
Res threshold [7:0]			
Reserve mode 4	2	217H[5:4]	The polarity of input synchronization signals.
Sync Polarity			Bit 0 is for VSYNC and bit 1 is for HSYNC
Reserve mode4	3	217H[2:0]	Resolution threshold for reserve mode 4
Res threshold [10:8]	U		
Reserve mode4	8	218H	Resolution threshold for reserve mode 4
Res threshold [7:0]	ý		
Reserve mode 5	2	219H[5:4]	The polarity of input synchronization signals.
Sync Polarity	-		Bit 0 is for VSYNC and bit 1 is for HSYNC
Reserve mode 5	3	219H[2:0]	Resolution threshold for reserve mode 5
Res threshold [10:8]	5	21711[2.0]	
Reserve mode 5	8	21AH	Resolution threshold for reserve mode 5
Res threshold [7:0]	U	21AII	
Reserve mode 6	2	21BH[5:4]	The polarity of input synchronization signals.
Sync Polarity	2	21011[3.4]	Bit 0 is for VSYNC and bit 1 is for HSYNC
Reserve mode 6	3	21BH[2:0]	Resolution threshold for reserve mode 6
Res threshold [10:8]	3	210[[2:0]	
Reserve mode 6	8	21CH	Resolution threshold for reserve mode 6
	ð	21CH	Resolution uneshold for reserve mode o
Res threshold [7:0]	2	21DUI5-43	The polonity of input our drawingtion single
Reserve mode 7	2	21DH[5:4]	The polarity of input synchronization signals.
Sync Polarity	2		Bit 0 is for VSYNC and bit 1 is for HSYNC
Reserve mode 7	3	21DH[2:0]	Resolution threshold for reserve mode 7
Res threshold [10:8]			

Reserve mode 7	8	21EH	Resolution threshold for reserve mode 7
Res threshold [7:0]			
Enable SYNC	14	21FH-220H	Enable SYNC polarity check during input mode
Check			detection.
			1: enable SYNC polarity based mode detection
			0: disable SYNC polarity based mode detection
			bit 0: 640x350 bit 1: 640x400 bit 2: 720x400
			bit 3: 640x480 bit 4: 800x600 bit 5: 832x624
			bit 6: 1024x768 bit 7: res mode1 bit 8: res mode2
			bit 9: res mode3 bit 10: res mode4 bit 11: res mode5
Mariana VDD	0	22111	bit 12: res mode6 bit 13: res mode7
Maximum VBP	<u>8</u> 11	221H	The maximum vertical back porch for input video
Mode0 vertical size Mode1 vertical size	11		Mode0 vertical size for digital input Mode1 vertical size for digital input
	11		
Mode2 vertical size			Mode2 vertical size for digital input
Mode3 vertical size	11 11		Mode3 vertical size for digital input
Mode4 vertical size			Mode4 vertical size for digital input
Mode5 vertical size	11		Mode5 vertical size for digital input
Mode6 vertical size	11		Mode6 vertical size for digital input
Mode7 vertical size	11		Mode7 vertical size for digital input
Mode8 vertical size	11		Mode8 vertical size for digital input
Mode9 vertical size	11		Mode9 vertical size for digital input
Mode10 vertical size	11		Mode10 vertical size for digital input
Mode11 vertical size	11		Mode11 vertical size for digital input
Mode12 vertical size	11		Mode12 vertical size for digital input
Mode0 horizontal size	11		Mode0 horizontal size for digital input
Mode1 horizontal size	11		Mode1 horizontal size for digital input
Mode2 horizontal size	11		Mode2 horizontal size for digital input
Mode3 horizontal size	11		Mode3 horizontal size for digital input
Mode4 horizontal size	11		Mode4 horizontal size for digital input
Mode5 horizontal size	11		Mode5 horizontal size for digital input
Mode6 horizontal size	11		Mode6 horizontal size for digital input
Mode7 horizontal size	11	24AH-24BH	Mode7 horizontal size for digital input
Mode8 horizontal size	11	24CH-24DH	Mode8 horizontal size for digital input
Mode9 horizontal size	11	24EH-24FH	Mode9 horizontal size for digital input
Mode10 horizontal size	11	250H-251H	Mode10 horizontal size for digital input
Mode11 horizontal size	11	252H-253H	Mode11 horizontal size for digital input
Mode12 horizontal size	11	254H-255H	Mode12 horizontal size for digital input
Data low threshold	8	256H	Low water mark for valid data.
			If the data is smaller than this threshold, it is considered
			LOW internally
Data high threshold	8	257H	High water mark for valid data.
			If the data is larger than this threshold, it is considered
			HIGH internally
Edge threshold	8	258H	Minimum difference between the data value of two
			adjacent pixels to be considered as an edge
Calibration mode	2	259H [1:0]	Selects different operation modes of internal phase
			calibration. The selection criterion is as follows:
			0: when input video signal has large overshot,
			it results in longest calibration time
			1: when input video signal has median overshot,
			it results in long calibration time
			2: when input video signal has normal overshot,

			it results in normal calibration time
			(recommended)
			3: when input video signal has no overshot,
			it results in shortest calibration time
PWM unit delay	16	25AH-25BH	The unit delay used in the external PWM delay circuitry.
			If the free-running clock is 1MHz, and the intended unit
			delay is $0.2 \text{ ns} (= 5,000 \text{MHz})$, then a value of
			5,000 MHz/1 MHz = 5,000 is used here.
Maximum link off time	22	25CH-25EH	Maximum time when input VSYNC is off before the
			LINK_DWN pin turns ON (unit: clock period of the free
			running clock). If the free-running clock is 1MHz, and the
			intended maximum time is 1 second, then a value of
			$1,000,000 \ \mu \text{s}/ 1 \ \mu \text{s} = 1,000,000 \ \text{is used here.}$
Maximum refresh rate	16	25FH-260H	Maximum refresh rate supported by the LCD panel.
			If the intended maximum refresh rate is 75Hz, and the
			free-running clock is 1MHz, then a value of
	0	0.6111	1000000/75=133,333 is used here
Maximum input	8	261H	Maximum source clock rate supported by the SD1010
frequency			(unit: frequency of free-running clock).
			If the intended maximum clock rate is 60MHz, and the
			free-running clock is 1MHz, then a value of 60 is used here.
		1	If the input signal has a higher frequency than this value,
			the VCLK0_X status bit will turn ON.
Minimum pixels per line	11	26211 26211	Minimum number of pixels per line for LCD panel
for LCD	11	20211-20311	within the number of pixels per line for ECD parer
LCD polarity	4	264H[3:0]	Controls the polarity of output VSYNC,
Leb pointing			
			HSYNC, clock and display enable:Bit0: 0: clock
			active high, 1: clock active low
			Bit1: 0: HSYNC active low, 1: HSYNC active high Bit2: 0: VSYNC active low, 1: VSYNC active high
			Bit4: 0: de active high, 1: de active low
Output enable for output	1	265H[3]	Enable for programmable output pad:
pin 51-54, 56-59, 61-64,	1	20311[3]	1: output is enabled
66-69, 71-74, 76-79, 81-			0: output is tri-state
84, 86-89, 91-97, 99,			o. output is un-state
101-104, 106-109			
Driving capability	3	265H[2:0]	0: 2mA
control for output pin	5	2031[2.0]	1: 6mA
51-54, 56-59, 61-64, 66-			2: 6mA
69, 71-74, 76-79, 81-84,			3: 10mA
86-89, 91-97, 99, 101-			4: 4mA
104, 106-109			5: 8mA
,			6: 8mA
			7: 12mA
Output enable for output	1	266H[7]	Enable for programmable output pad:
pin 49 (DE)			1: output is enabled
			0: output is tri-state
Driving capability	3	266H[6:4]	0: 2mA
control for output pin 49			1: 6mA
(DE)			2: 6mA
			3: 10mA
			4: 4mA
			5: 8mA

SmartASIC Confidential

			6: 8mA
			7: 12mA
	1	26611(2)	
Output enable for output	1	266H[3]	Enable for programmable output pad:
pin 46 (HSYNC_O)			1: output is enabled
D · · · 1 · 1 · 1 ·	2	2661112-01	0: output is tri-state
Driving capability	3	266H[2:0]	0: 2mA
control for output pin 46			1: 6mA
(HSYNC_O)			2: 6mA
			3: 10mA
			4: 4mA
			5: 8mA
			6: 8mA
			7: 12mA
Output enable for output	1	267H[7]	Enable for programmable output pad:
pin 49 (VSYNC_O)			1: output is enabled
			0: output is tri-state
Driving capability	3	267H[6:4]	0: 2mA
control for output pin 49			1: 6mA
(VSYNC_O)			2: 6mA
			3: 10mA 🛛 💑 🧊 🚬 🏠
			4: 4mA
			0: 2mA 1: 6mA 2: 6mA 3: 10mA 4: 4mA 5: 8mA 6: 8mA 7: 12mA
			6: 8mA
			7: 12mA
Output enable for output	1	267H[3]	Enable for programmable output pad:
pin 46 (DCLK_OUT)			1: output is enabled
			0: output is tri-state
Driving capability	3	267H[2:0]	0: 2mA
control for output pin 46			1: 6mA
(DCLK_OUT)			2: 6mA
			3: 10mA
			4: 4mA
			5: 8mA
			6: 8mA
			7: 12mA
Extension right	4	268H[7:4]	Numbers of pixels extended right for support of non-full
			screen expansion for secondary resolution to avoid
			exceeding panel specification
Extension left	4	268H[3:0]	Numbers of pixels extended left for support of non-full
			screen expansion for secondary resolution to avoid
			exceeding panel specification
Extension down	2	269H[1:0]	Numbers of lines extended down for support of non-full
			screen expansion for secondary resolution to avoid
			exceeding panel specification
Gamma_format0	24	26AH-26CH	26AH: gamma_format0_red
			26BH: gamma_format0_green
			26CH: gamma_format0_blue
Gamma_format1	24	26DH-26FH	26DH: gamma_format1_red
			26EH: gamma_format1_green
			26FH: gamma_format1_blue
Gamma_th0_r	8	270H	Gamma_threshold0 for red
Gamma_th1_r	8	271H	Gamma_threshold1 for red
Gamma_th2_r	8	272H	Gamma_threshold2 for red
Gamma_th3_r	8	272H	Gamma_threshold3 for red
uio_i	0	2,511	culture_unconordo for rea

Gamma_th4_r	8	274H	Gamma_threshold4 for red
Gamma_th5_r	8	275H	Gamma_threshold5 for red
Gamma_th6_r	8	276H	Gamma_threshold6 for red
Gamma_th0_g	8	277H	Gamma_threshold0 for green
Gamma_th1_g	8	278H	Gamma_threshold1 for green
Gamma_th2_g	8	279H	Gamma_threshold2 for green
Gamma_th3_g	8	27AH	Gamma_threshold3 for green
Gamma_th4_g	8	27BH	Gamma_threshold4 for green
Gamma_th5_g	8	27CH	Gamma_threshold5 for green
Gamma_th6_g	8	27DH	Gamma_threshold6 for green
Gamma_th0_b	8	27EH	Gamma_threshold0 for blue
Gamma_th1_b	8	27FH	Gamma_threshold1 for blue
Gamma_th2_b	8	280H	Gamma_threshold2 for blue
Gamma_th3_b	8	281H	Gamma_threshold3 for blue
Gamma_th4_b	8	282H	Gamma_threshold4 for blue
Gamma_th5_b	8	283H	Gamma_threshold5 for blue
Gamma_th6_b	8	284H	Gamma_threshold6 for blue
Gamma_scale0_r	8	285H	Gamma_scalefactor0 for red
Gamma_scale1_r	8	286H	Gamma_scalefactor1 for red
Gamma_scale2_r	8	287H	Gamma_scalefactor2 for red
Gamma_scale3_r	8	288H	Gamma_scalefactor3 for red
Gamma_scale4_r	8	289H	Gamma_scalefactor4 for red
Gamma_scale5_r	8	28AH	Gamma_scalefactor5 for red
Gamma_scale6_r	8	28BH	Gamma_scalefactor6 for red
Gamma_scale7_r	8	28CH	Gamma_scalefactor7 for red
Gamma_scale0_g	8	28DH	Gamma_scalefactor0 for green
Gamma_scale1_g	8	28EH	Gamma_scalefactor1 for green
Gamma_scale2_g	8	28FH	Gamma_scalefactor2 for green
Gamma_scale3_g	8	290H	Gamma_scalefactor3 for green
Gamma_scale4_g	8	291H	Gamma_scalefactor4 for green
Gamma_scale5_g	8	292H	Gamma_scalefactor5 for green
Gamma_scale6_g	8	293H	Gamma_scalefactor6 for green
Gamma_scale7_g	8	294H	Gamma_scalefactor7 for green
Gamma_scale0_b	8	295H	Gamma_scalefactor0 for blue
Gamma_scale1_b	8	296H	Gamma_scalefactor1 for blue
Gamma_scale2_b	8	297H	Gamma_scalefactor2 for blue
Gamma_scale3_b	8	298H	Gamma_scalefactor3 for blue
Gamma_scale4_b	8	299H	Gamma_scalefactor4 for blue
Gamma_scale5_b	8	29AH	Gamma_scalefactor5 for blue
Gamma_scale6_b	8	29BH	Gamma_scalefactor6 for blue
Gamma_scale7_b	8	29CH	Gamma_scalefactor7 for blue
Gamma_offset0_r	8	29DH	Gamma_offset0 for red
Gamma_offset1_r	8	29EH	Gamma_offset1 for red
Gamma_offset2_r	8	29FH	Gamma_offset2 for red
Gamma_offset3_r	8	2A0H	Gamma_offset3 for red
Gamma_offset4_r	8	2A1H	Gamma_offset4 for red
Gamma_offset5_r	8	2A2H	Gamma_offset5 for red
Gamma_offset6_r	8	2A3H	Gamma_offset6 for red
Gamma_offset7_r	8	2A4H	Gamma offset7 for red
Gamma_offset0_g	8	2A5H	Gamma_offset0 for green

November, 1999 Revision B

Gamma_offset1_g

Gamma_offset2_g

8

8

SmartASIC Confidential

Gamma_offset1 for green

Gamma_offset2 for green

2A6H

2A7H

Gamma_offset3_g	8	2A8H	Gamma_offset3 for green
Gamma_offset4_g	8	2A9H	Gamma_offset4 for green
Gamma_offset5_g	8	2AAH	Gamma_offset5 for green
Gamma_offset6_g	8	2ABH	Gamma_offset6 for green
Gamma_offset7_g	8	2ACH	Gamma_offset7 for green
Gamma_offset0_b	8	2ADH	Gamma_offset0 for blue
Gamma_offset1_b	8	2AEH	Gamma_offset1 for blue
Gamma_offset2_b	8	2AFH	Gamma_offset2 for blue
Gamma_offset3_b	8	2B0H	Gamma_offset3 for blue
Gamma_offset4_b	8	2B1H	Gamma_offset4 for blue
Gamma_offset5_b	8	2B2H	Gamma_offset5 for blue
Gamma_offset6_b	8	2B3H	Gamma_offset6 for blue
Gamma_offset7_b	8	2B4H	Gamma_offset7 for blue
Check sum	8	2B5H	Sum of all part 9 bytes (keep only lower 8 bit)

3.6. CPU interface The SD1010 supports a 2-wire serial interface to an external CPU. The interface allows the external CPU to access and modify control registers inside the SD1010. The 2-wire serial interface is similar to the EEPROM interface, and the CPU is the host that drives the SCL all the time as the clock and for "start" and "stop" bits. The SCL frequency can be as high as 5MHz. The SDA is a bi-directional data wire. This interface supports random and sequential write operations for the CPU to modify one or multiple control registers, and random and sequential read operations for the CPU to read all or part of the control registers.

The default device ID for the SD1010 is fixed "1111111". The device ID can be programmed through EEPROM entry 200H bit 0 through bit 6. This avoids any conflict with other 2-wire serial devices on the same bus.

The following table briefly describes the SD1010 control registers. The external CPU can read these registers to know the state of the SD1010 as well as the result of input mode detection and phase calibration. The external CPU can modify these control registers to disable several SD1010 features and force the SD1010 into a particular state. When the CPU modifies the control registers, the new data will be first stored in a set of shadow registers, and then copied into the actual control registers when the "CPU Control Enable" bit is set. When the "CPU Control Enable" bit is set, the external CPU will retain control and the SD1010 will not perform the auto mode detection and auto calibration.

The external CPU is able to adjust the size of the output image and move the output image up and down by simply changing the porch size and pixel and line numbers of the input signal. These adjustments can be tied to the external user control button on the monitor.

A set of four control registers are used to generate output signal when there is no input signal available to the SD1010 or the input signal is beyond the acceptable ranges. This operation mode is called standalone mode, which is very important for the end users when they accidentally select an input mode beyond the acceptable range of the SD1010 or when the input cable connection becomes loose for any reason. System manufacturers can display appropriate OSD warning messages on the LCD panel to notify the users about the problem.

Symbol	Width	Mode	Address	Description
VBP Source	11	RW	0H-1H	Input VSYNC back porch (not include pulse width)
VSIZE Source	11	RW	2H-3H	Input image lines per frame
VTOTAL Source	11	RW	4H-5H	Input total number of lines including porches
HBP Source	11	RW	6H-7H	Input HSYNC back porch (not include pulse width)
HSIZE Source	11	RW	8H-9H	Input image pixels per line
HTOTAL Source	11	RW	AH-BH	Input total number of pixels per line including porches
Mode Source	4	RW	CH[3:0]	Input video format
				0: 640x350
				1: 640x400
				2: 720x400
				3: 640x480
				4: 800x600
				5: 832x624
				6: 1024x768
				7: user defined mode 1
				8: user defined mode 2 9: user defined mode 3
				10: user defined mode 4
				11: user defined mode 5
				12: user defined mode 6
				13: user defined mode 7
				14-15: error
Clock Phase Source	10	RW	DH-EH	Input sampling clock phase
VPW standalone	11	RW	FH-10H	For standalone mode, the pulse width of VSYNC
VTOTAL standalone	11	RW	11H-12H	For standalone mode, total number of line per frame
HPW standalone	11	RW	13H-14H	For standalone mode, HSYNC active time in µs
HTOTAL standalone	11	RW	15H-16H	For standalone mode, HSYNC cycle time in µs
Disable auto	1	RW	17H[7]	Disable auto calibration for this mode:
calibration for mode				1: disable
640x350				0: enable
Delay auto	15	RW	17H[6:0]-	The number of frames need to be skipped before
calibration for mode			18H	starting auto calibration for this mode
640x350				
Disable auto	1	RW	19H[7]	Disable auto calibration for this mode:
calibration for mode				1: disable
640x400				0: enable
Delay auto	15	RW	19H[6:0]-	The number of frames need to be skipped before
calibration for mode			1AH	starting auto calibration for this mode
640x400				
Disable auto	1	RW	1BH[7]	Disable auto calibration for this mode:

Table 3: SD1010 Control Registers

November, 1999 Revision B 33

calibration for mode				1: disable
720x400				0: enable
Delay auto	15	RW	1BH[6:0]-	The number of frames need to be skipped before
calibration for mode	15	K W	1CH	starting auto calibration for this mode
720x400			ien	starting auto canoration for this mode
Disable auto	1	RW	1DH[7]	Disable auto calibration for this mode:
calibration for mode	1	K W	ΙΔΠ[/]	1: disable
640x480				0: enable
	15	RW	1DH[6:0]-	
Delay auto calibration for mode	15	Λ W	1DH[0.0]- 1EH	starting auto calibration for this mode
640x480			IEП	starting auto canoration for this mode
Disable auto	1	RW	1171171	Disable auto calibration for this mode:
calibration for mode	1	ĸw	1FH[7]	1: disable
800x600				0: enable
	15	RW	10116.01	
Delay auto calibration for mode	15	ĸw	1FH[6:0]-	The number of frames need to be skipped before
			20H	starting auto calibration for this mode
800x600	1	DW	211171	Dischle auto colibustion for this mode
Disable auto calibration for mode	1	RW	21H[7]	Disable auto calibration for this mode: 1: disable
832x624	15	RW	211112-01	0: enable
Delay auto calibration for mode	15	ĸw	21H[6:0]- 22H	The number of frames need to be skipped before
832x624			2211	starting auto calibration for this mode
	1	DW	0011171	Dist 1 March 1 March 2 March 2
Disable auto	1	RW	23H[7]	Disable auto calibration for this mode:
calibration for mode				1: disable
1024x768	15	DW	221116-01	0: enable
Delay auto calibration for mode	15	RW	23H[6:0]- 24H	The number of frames need to be skipped before
1024x768			24Π	starting auto calibration for this mode
Disable auto	1	RW	2511[7]	Disable auto calibration for this mode:
calibration for mode	1	Λ W	25H[7]	1: disable
INVALID				0: enable
Delay auto	15	RW	25[6:0]-	The number of frames need to be skipped before
calibration for mode	15	IX VV	25[0.0]- 26H	starting auto calibration for this mode
INVALID			2011	starting auto canoration for this mode
Bypass Sync Polarity	1	RW	27H[7]	Bypass Input SYNC polarity detection (default 0):
Bypass Sylic Folality	1	K W	2/11[/]	1: bypass input SYNC polarity detection (default 0).
				0: detect input SYNC polarity and make them negative
Dithering Enable	1	RW	28H[7]	polarity Enable dithering for 6-bit panel (default 0):
Dittlering Enable	1	IX VV	2011[7]	1: enable dithering
				0: disable dithering
				*also check register Control_C[6]
Frame Modulation	1	RW	28H[6]	Enable frame modulation for 6-bit panel (default 0):
Enable	1	17.00	2011[0]	1: enable frame modulation
Lindoic				0: disable frame modulation
				*also check register Control_B[5] and Control_B[7]
Horizontal	1	RW	28H[5]	Enable horizontal interpolation (default 0):
Interpolation Enable	I	17.44	2011[3]	1: enable horizontal interpolation (default 0).
				0: disable horizontal interpolation
Vertical Interpolation	1	RW	28H[4]	Enable vertical interpolation (default 0):
Enable	I	17.44	2011[4]	1: enable vertical interpolation (default 0).
Linduic				
				U: disable vertical interpolation
Horizontal Rounding	1	RW	28H[3]	0: disable vertical interpolation Enable horizontal rounding (default 0):

I				Bit U. Horizonial Infernolation Uttset Enable
				default is 00H Bit 0: Horizontal Interpolation Offset Enable
				0 – disable 1 – enable
Control_A	8	RW	2CH[7:0]	Control Register A:
				 Adjust Horizontal Back Porch state Phase Tracking state
				will be done after state 10)
				Calibration will be done after state 9) 10: Phase Calibration State (Auto Phase Calibration
				5-9: Frequency Calibration State (Auto Frequency
				1-4: Loading EEPROM data
Status I	+	к	2011[3.0]	0: Idle State
Status 1	4	R	2BH[3:0]	Bit 7: refresh rate exceed LCD panel specification Internal auto calibration state
				Bit 6: input data clock is too fast
				Bit 5: no input video
				Bit 4: input has too few lines
				Bit 3: EEPROM calibration entries loading
				Bit 1: EERPOM horizontal lookup table loading Bit 2: EEPROM mode dependent entries loading
				Bit 0: EEPROM vertical lookup table loading
				0: indicate normal status
		-		1: indicate error status
Status 0	8	R	2AH	Read only internal status registers:
				control registers. SD1010 cannot write control registers
				1: enable external CPU control. CPU can read/write
				control registers, but CPU only read control registers.
				0: disable external CPU control. SD1010 can write
CPU control enable	1	RW	29H[0]	External CPU control enable:
Dependent DEI KOW				entries
Load Mode Dependent EEPROM	1	RW	29H[1]	Should be kept low most of the time. A high pulse will force SD1010 to reload mode dependent EEPROM
Lood Mode	1	DW	2011[1]	force SD1010 to reload all EEPROM entries
Load ALL EEPROM	1	RW	29H[2]	Should be kept low most of the time. A high pulse will
		DU	0011123	1: full intensity
				0: half intensity
OSD Intensity	1	RW	29H[3]	OSD intensity selection:
				0: disable such detection
				1: Enable such detection
Enable	1	RW	29H[4]	Enable detection of short lines (IBM panel only, default 0):
HSYNC Threshold	1	DW	2011[4]	0: disable vertical Table Lookup
Lookup Enable				1: enable vertical Table Lookup
Vertical Table	1	RW	28H[0]	Enable vertical Table Lookup (default 0):
_				0: disable horizontal Table Lookup
Lookup Enable			1	1: enable horizontal Table Lookup
Horizontal Table	1	RW	28H[1]	Enable horizontal Table Lookup (default 0):
Lindole				0: disable vertical rounding
Vertical Rounding Enable	1	RW	28H[2]	Enable vertical rounding (default 0): 1: enable vertical rounding
TT I I D II		DUU	2011(2)	0: disable horizontal rounding

				Bit 1: Vertical Interpolation Offset Enable Bit 2: Horizontal Interpolation Fraction Reset Enable Bit 3: Vertical Interpolation Fraction Reset Enable Bit 4: Horizontal Interpolation Integer Increment Enable Bit 5: Vertical Interpolation Integer Increment Enable Bit 6: Single Pixel Output Mode Enable Bit 7: Disable "DE_OUT", for blanking screen purpose
Control_B	8	RW	2DH[7:0]	Control Register B
				 Bit [2:0]: Pixel Comparison Mode: 0: compare r even(default) 1: compare g even 2: compare b even 3: invalid 4: compare r odd 5: compare g odd 6: compare b odd 7: invalid *Using pixel comparison should program register "Pixel Comparison Value" and check register "Status 2[1:0]" Bit [4:3]: Brightness Control: 0: disable brightness control(default) 1: reduce brightness 2: increase brightness 3: invalid *Using brightness control should specify register "Brightness Adjustment" and check register "Status 2[2]" Bit [5]: Frame Modulation Mode: 0: 2-bit mode(default) 1: 1-bit mode Bit [6]: 6-bit Panel Rounding Enable: 0: disable(default) 1: enable Bit [7]: Frame Modulation Scheme Selection: 0: Scheme A(default) 1: Scheme B
Control_C	8	RW	2EH[7:0]	Control Register C
				Bit [1:0]: Horizontal Interpolation Special Processing Mode: 0: disable 1: linear 2: replication(default) 3: invalid Bit [3:2]: Vertical Interpolation Special Processing Mode: 0: disable

				1: linear
				2: replication(default)
				3: invalid
				Bit [4]: OSD Transparency Enable:
				0: disable(default)
				1: enable
				*also need to program registers "OSD R Weight",
				"OSD G Weight" and "OSD B Weight"
				Bit [5]: Advanced Post Processing Enable:
				0: disable(default)
				1: enable
				*also need to specify registers "Advanced Processing R
				Weight", "Advanced Processing G Weight",
				"Advanced Processing B Weight", "Advanced
				Processing R Value", "Advanced Processing G Value"
				and "Advanced Processing B Value" for properly
				functioning
				Bit [6]: Dithering Scheme Selection
				0: Scheme A(default)
				1: Scheme B
				Bit [7]: Reserved
Control_D	8	RW	2FH[7:0]	Control Register D
Control_D	Ŭ		2111[/.0]	
				Dit [2:0]: Advanged Dressesing Shift Amount From O
				Bit [3:0]: Advanced Processing Shift Amount. From 0
				-8. 8 is the default value.
				Bit [4]: Advance Mixing Shift Enable
				0: disable(default)
				1: enable
				*This is a option for Advanced Post Processing
				Dit [7:5], Deconvod
	0	DIII	20115 01	Bit [7:5]: Reserved
Interpolation H.	8	RW	30H[7:0]	High Byte For Interpolation Horizontal Offset
Offset				Default is 00H
Interpolation H.	8	RW	31H[7:0]	Low Byte For Interpolation Horizontal Offset
Offset				Default is 00H
Interpolation V.	8	RW	32H{7:0]	High Byte For Interpolation Vertical Offset
	0	17.44	5211[7.0]	
Offset				Default is 00U
		D	00115-0-	Default is 00H
Interpolation V.	8	RW	33H[7:0]	Low Byte For Interpolation Vertical Offset
Interpolation V. Offset		RW	33H[7:0]	
Offset	8			Low Byte For Interpolation Vertical Offset Default is 00H
Offset H. Interpolation Rest		RW RW	33H[7:0] 34H[7:0]	Low Byte For Interpolation Vertical Offset Default is 00H Bit [2:0]: High Bits For Horizontal Interpolation Reset
Offset				Low Byte For Interpolation Vertical Offset Default is 00H Bit [2:0]: High Bits For Horizontal Interpolation Reset Count. Default is 0H.
Offset H. Interpolation Rest Count	8	RW	34H[7:0]	Low Byte For Interpolation Vertical Offset Default is 00H Bit [2:0]: High Bits For Horizontal Interpolation Reset Count. Default is 0H. Bit [7:3]: Reserved
Offset H. Interpolation Rest Count H. Interpolation				Low Byte For Interpolation Vertical Offset Default is 00H Bit [2:0]: High Bits For Horizontal Interpolation Reset Count. Default is 0H. Bit [7:3]: Reserved Low Byte For Horizontal Interpolation Reset Count.
Offset H. Interpolation Rest Count H. Interpolation Reset Count	8	RW RW	34H[7:0] 35H[7:0]	Low Byte For Interpolation Vertical Offset Default is 00H Bit [2:0]: High Bits For Horizontal Interpolation Reset Count. Default is 0H. Bit [7:3]: Reserved Low Byte For Horizontal Interpolation Reset Count. Default is 00H.
Offset H. Interpolation Rest Count H. Interpolation	8	RW	34H[7:0]	Low Byte For Interpolation Vertical Offset Default is 00H Bit [2:0]: High Bits For Horizontal Interpolation Reset Count. Default is 0H. Bit [7:3]: Reserved Low Byte For Horizontal Interpolation Reset Count.
Offset H. Interpolation Rest Count H. Interpolation Reset Count V. Interpolation	8	RW RW	34H[7:0] 35H[7:0]	Low Byte For Interpolation Vertical Offset Default is 00H Bit [2:0]: High Bits For Horizontal Interpolation Reset Count. Default is 0H. Bit [7:3]: Reserved Low Byte For Horizontal Interpolation Reset Count. Default is 00H. Bit [1:0]: High Bits For Vertical Interpolation Reset
Offset H. Interpolation Rest Count H. Interpolation Reset Count V. Interpolation Reset Count	8	RW RW RW	34H[7:0] 35H[7:0] 36H[7:0]	Low Byte For Interpolation Vertical Offset Default is 00H Bit [2:0]: High Bits For Horizontal Interpolation Reset Count. Default is 0H. Bit [7:3]: Reserved Low Byte For Horizontal Interpolation Reset Count. Default is 00H. Bit [1:0]: High Bits For Vertical Interpolation Reset Count. Default is 0H.
Offset H. Interpolation Rest Count H. Interpolation Reset Count V. Interpolation Reset Count V. Interpolation	8	RW RW	34H[7:0] 35H[7:0]	Low Byte For Interpolation Vertical Offset Default is 00H Bit [2:0]: High Bits For Horizontal Interpolation Reset Count. Default is 0H. Bit [7:3]: Reserved Low Byte For Horizontal Interpolation Reset Count. Default is 00H. Bit [1:0]: High Bits For Vertical Interpolation Reset Count. Default is 0H. Low Byte For Interpolation Vertical Reset Count.
Offset H. Interpolation Rest Count H. Interpolation Reset Count V. Interpolation Reset Count V. Interpolation Reset Count	8 8 8 8	RW RW RW RW	34H[7:0] 35H[7:0] 36H[7:0] 37H[7:0]	Low Byte For Interpolation Vertical Offset Default is 00H Bit [2:0]: High Bits For Horizontal Interpolation Reset Count. Default is 0H. Bit [7:3]: Reserved Low Byte For Horizontal Interpolation Reset Count. Default is 00H. Bit [1:0]: High Bits For Vertical Interpolation Reset Count. Default is 0H. Low Byte For Interpolation Vertical Reset Count. Default is 00H.
Offset H. Interpolation Rest Count H. Interpolation Reset Count V. Interpolation Reset Count V. Interpolation Reset Count OSD R Weight	8 8 8 8 8	RW RW RW	34H[7:0] 35H[7:0] 36H[7:0]	Low Byte For Interpolation Vertical Offset Default is 00H Bit [2:0]: High Bits For Horizontal Interpolation Reset Count. Default is 0H. Bit [7:3]: Reserved Low Byte For Horizontal Interpolation Reset Count. Default is 00H. Bit [1:0]: High Bits For Vertical Interpolation Reset Count. Default is 0H. Low Byte For Interpolation Vertical Reset Count. Default is 00H. Mixing Weight For OSD R. Default is 00H.
Offset H. Interpolation Rest Count H. Interpolation Reset Count V. Interpolation Reset Count V. Interpolation Reset Count	8 8 8 8	RW RW RW RW	34H[7:0] 35H[7:0] 36H[7:0] 37H[7:0]	Low Byte For Interpolation Vertical Offset Default is 00H Bit [2:0]: High Bits For Horizontal Interpolation Reset Count. Default is 0H. Bit [7:3]: Reserved Low Byte For Horizontal Interpolation Reset Count. Default is 00H. Bit [1:0]: High Bits For Vertical Interpolation Reset Count. Default is 0H. Low Byte For Interpolation Vertical Reset Count. Default is 00H.

OSD B Weight	8	RW	3AH[7:0]	Mixing Weight For OSD B. Default is 00H.	
Advanced Processing R Weight	8	RW	3BH[7:0]	Weight For Advanced Post Processing R default is 00H	
Advanced Processing G Weight	8	RW	3CH[7:0]	Weight For Advanced Post Processing G Default is 00H	
Advanced Processing B Weight	8	RW	3DH[7:0]	Weight For Advanced Post Processing B Default is 00H	
Advanced Processing R Value	8	RW	3EH[7:0]	Value For Advanced Post Processing R Default is 00H	
Advanced Processing G Value	8	RW	3FH[7:0]	Value For Advanced Post Processing G Default is 00H	
Advanced Processing B Value	8	RW	40H[7:0]	Value For Advanced Post Processing B Default is 00H	
Brightness Adjustment	8	RW	41H[7:0]	The Adjust Amount For Reducing/Increasing Brightness. Default is 00H.	
Pixel Comparison Value	8	RW	42H[7:0]	The Value To Compare The Incoming Pixel Data. Default is 00H.	
Status 2	8	R	43H[7:0]	The Status Register 2	
			N	 Bit [1:0]: Result for comparing the selected incoming pixel with "Pixel Comparison Value": 0: invalid 1: incoming pixel > "Pixel Comparison Value" 2: incoming pixel = "Pixel Comparison Value" 3: incoming pixel < "Pixel Comparison Value" 	
	1			Bit [2]: Status for brightness control 0: Normal, no underflow/overflow 1: brightness reduced too much causes underflow/increased too much causes overflow	
Recovery Control	8	RW	44H	Bit [7:3]: Reserved Clock Recovery Control Register:	
				Default value is 71H Bit 0: clock frequency is divisible by 2 Bit 1: clock frequency is divisible by 4 Bit 2: clock frequency is divisible by 8 Bit 3: enable phase tracking feature Bit 4: enable auto phase calibration Bit 5: enable auto frequency calibration Bit 6: enable auto mode detection Bit 7: enable operation at half clock speed	
Phase Range	4	RW	45H	Offset value added to the calibrated phase when phase tracking occurs	
Phase Track Waiting Time	24	RW	46H 48H	Number of frames waited before phase tracking occurs	
Quick Phase Enable	1	RW	49H[0]	0: Normal phase calibration (default) 1: Final phase = phase total – phase offset	
PWM Enable	1	RW	49H[1]	0: Disable auto phase total calculation 1: Enable auto phase total calculation (default)	
Standalone Enable	1	RW	49H[2]	 0: Uses the external incoming SYNC signals (default) 1: Allow the use of the default SYNC signals instead of the incoming SYNC signals 	

Digital Enable	1	RW	49H[3]	0: Analog interface (default)
				1: Digital interface (no auto calibration)
Phase Offset	10	RW	4AH	Offset value subtracted from phase total when doing
	10		4BH	quick phase calculation
Phase Total	10	RW	4CH 4DH	User defined value for a particular frequency
Image Quality Index	30	R		Read only register for CPU to monitor Image Quality
ininge Quanty inden	20		FH, 50H,	Index. The Image Quality Index is used by auto phase
			51H	calibration.
Text Control	8	RW	52H[7:0]	Text-Enhancement Control
				D it[0], taxt anhoncement angle
				Bit[0]: text enhancement enable 0: disable
				1: enable
				Bit[1]: Reserved
				Bit[6:2]: text-enhanced level
				Level $0 - 14$. Level "0" is the same as original source,
				and "14" is the highest enhancement level.
				Bit[7]: Reserved
				Default is 00H
Sharpness Control	8	RW	53H[7:0]	Sharpness-Enhancement Control
-				
				Bit[0]: sharpness enhancement enable
				0: disable
				1: enable
				Bit[1]: Reserved
				Bit[6:2]: sharpness-enhanced level
				Level $1 - 19$. Level "5" is the same as the original
				source. From "4" to "1" intend to soften the picture,
				and "1" is the softest level. From level "6" to "19" will
				sharpen the picture gradually. Level "19" is the
				sharpest output.
				Bit[7]: Reserved
				Default is 14H
Control_E	8	RW	54H[7:0]	Control Register E
				Bit[3:0]: text enhancement threshold.
				Bit[4]: reserved
				Bit[6:5]: Frame Modulation Mode
				0: compatible with SD1010 1-3: new schemes
				1 J. new schemes
				Bit[7]: reserved
				Default is 05H
			Smart A SIC (

Dim 1 1	11	DW	5511 [10:0]	The placetion for moding "D'-1"	
Pixel_h	11	RW	55H[10:8] 56H[7:0]	The x location for reading "Pixel_out" register	
Pixel_v	11	RW	57H[10:8] 58H[7:0]	The y location for reading "Pixel_out" register	
Pixle_out	24	R		Read out pixel located by "Pixel_h" and "Pixel_v"	
Fc3_start	1	RW	5CH[4]	Forces auto calibration to recalculate h back porch	
Channel_select	1	RW	5CH[3]	Only for single pixel input	
			[.]	0: takes input data from channel 1 1: takes input data from channel 0	
Dual_pixel	1	RW	5CH[2]	0: takes input data from one single channel 1: takes input data from both channels	
Soft_start	1	RW	5CH[1]	Restarts auto calibration without going into reset	
ICS_phase_state	1	RW	5CH[0]	Forces auto calibration to calculate the image quality	
			- []	for a particular clock phase when supplied by ics chips	
Hsize_by842_en	1	RW	5DH[7]	Turn on internal hsize matching by8, 4, 2 when clock frequency calibration is done by8, 4, 2. Used mainly for special non-full screen inputs.	
Video_mode	1	RW	5DH[6]	0: disable input video mode 1: input is video	
Input_yuv	1	RW	5DH[5]	0: input video format is RGB 1: input video format is YUV 4:2:2	
Yuv_signed	1	RW	5DH[4]	0: input video YUV format is unsigned 1: input video YUV format is signed	
decimation	1	RW	5DH[3]	Used when input resolution is higher than output	
				1: enable special decimation control	
				0: disable special decimation	
Detect_en	2	RW	5DH[2:1]	Input data range detection. The results are put in register 64H and 65H 0: disable detection 1: detect MAX/MIN using R color 2: detect MAX/MIN using G color	
A	1	DW	501101	3: detect MAX/MIN using B color	
Agc_en Agc_gain_red	1 8	RW RW	5DH[0] 5EH	Automatic gain control enable Gain amount for R color	
<u> </u>	8 8			Gain amount for G color	
Agc_gain_green Agc_gain_blue	8 8	RW RW	5FH		
0 -0 -	8	RW	60H	Gain amount for B color Offset amount for R color	
Agc_offset_red			61H	Offset amount for G color	
Agc_offset_green	8	RW	62H		
Agc_offset_blue	8	RW	63H	Offset amount for B color	
Input_max	8	R	64H	Detected maximum input data (please see 5DH)	
Input_min	8	R	65H	Detected minimum input data (please see 5DH)	
ICS_freq_state	1	RW	66H[5]	Forces auto calibration to calculate the hsize value for a particular clock frequency when supplied by ics chips	
ICS_hsize_valid	1	RW	66H[4]	Indicates when hsize value is ready for cpu to read in ics mode. Can be clear by cpu	
ICS_iq_valid	1	RW	66H[3]	Indicates when image quality is ready for cpu to read in ics mode. Can be clear by cpu	
IQ_valid	1	RW	66H[2]	Indicates when image quality is ready for cpu to read in Regular non-ics mode. Can be clear by cpu	
Divisor_valid	1	RW	66H[1]	Indicates when auto clock frequency calibration is done and frequency value is ready for cpu to read. Can be clear by cpu	

Non_full_screen	1	RW	66H[0]	Indicates when input data is non full screen. Can be clear by cpu
Divisor_value	11	R	67H[2:0], 68H	Read only register containing value of clock frequency when divisor_valid is asserted
IQ_value	30	R	69H[5:0], 6AH,6BH, 6CH	Read only register containing value of image quality when either ics_iq_valid or iq_valid is asserted
Panel_on	1	RW	6DH[0]	1: turn on all the outputs to the panel 0: disable outputs to the panel (need to disable EEPROM 265H[3], 266H[7], 266H[3], 267H[7], 267H[3] to get complete output disable).
ICS_hsize_value	11	R	6EH[2:0], 6FH	Read only register containing value of hsize when ics_hsize_valid is asserted
Rom_clk_sel	6	RW	70H[5:0]	Divisor value use to divide fast pwm_free_clk to slower free_clk

Control Flow 3.7.

うな まち When SD1010 is powered up, the reference system and SD1010 will perform the following functions in sequence:

- 1. System will generate a Power-On Reset to SD1010.
- 2. Once the SD1010 receives the Reset, SD1010 will load the contents of EEPROM and start the auto-calibration process.
- 3. In the meantime, the external CPU can change the contents of the control registers of the SD1010. If necessary, the external CPU can send an additional Reset to restart the whole process.

4. ELECTRICAL SPECIFICATIONS

This section presents the electrical specifications of the SD1010.

4.1. Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
VCC	Power Supply	-0.3 to 3.6	V
Vin	Input Voltage	-0.3 to VCC + 0.3	V
Vout	Output Voltage	-0.3 to VCC +0.3	V
VCC5	Power Supply for 5V	-0.3 to 6.0	V
Vin5	Input Voltage for 5V	-0.3 to VCC5 + 0.3	V
Vout5	Output Voltage for 5V	-0.3 to VCC5 +0.3	V
TSTG	Storage Temperature	-55 to 150	°C

4.2. Recommended Operating Conditions

			AT	>	
Symbol	Parameter	Min.	Typ.	Max.	Units
VCC	Power Supply	3.0	3.3	3.6	V
Vin	Input Voltage	0	6	VCC	V
VCC5	Commercial Power Supply for 5V	4.75	5.0	5.25	V
VIN5	Input Voltage for 5V	0	-	VCC5	V
TJ	Commercial Junction	0	25	115	°C
	Operating Temperature				

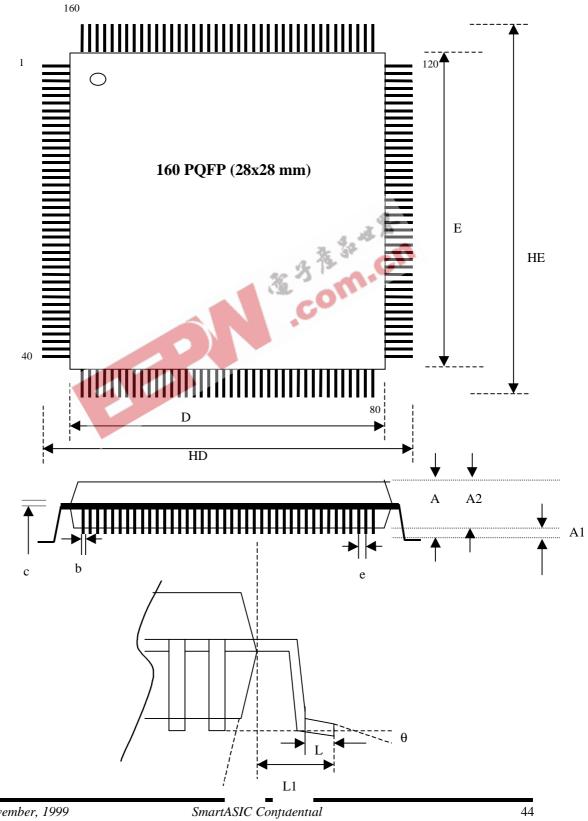
4.3. General DC Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
IIL	Input Leakage	no pull – up or	-1		1	μA
	Current	pull - down				·
IOZ	TRI-state Leakage		-1		1	μA
	Current					
CIN3	3.3V Input Capacitance			2.8		ρF
COUT3	3.3V Output		2.7		4.9	ρF
	Capacitance					
CBID3	3.3V Bi-directional		2.7		4.9	ρF
	Buffer Capacitance					
CIN5	5V Input Capacitance			2.8		ρF
COUT5	5V Output Capacitance		2.7		5.6	ρF
CBID5	5V Bi-directional		2.7		5.6	ρF
	Buffer Capacitance					

Note: The capacitance above does not include PAD capacitance and package capacitance. One can estimate pin capacitance by adding pad capacitance, which is about $0.5 \ r$ F, and the package capacitance

4.4. DC Electrical Characteristics for 3.3 V Operation

(Under Re	ecommended Operation C	onditions and V	$cc = 3.0 \sim$	3.6V, 7	$\Gamma_{\rm J} = 0^{\circ} \rm C$ to -	+115°C)
Symbol	Parameter	Conditions	Min.	Typ.	Max.	Units
VIL	Input low voltage	CMOS			0.3*VCC	V
VIH	Input high voltage	CMOS	0.7*VCC			V
VT-	Schmitt trigger negative going threshold voltage	COMS		1.20		V
VT+	Schmitt trigger positive going threshold voltage	COMS		2.10		V
VOL	Output low voltage	IOH=2,4,8,12, 16,24 mA			0.4	V
VOH	Output high voltage	IOH=2,4,8,12, 16,24 mA	2.4	R		V
RI	Input pull-up /down resistance	VIL=0V or VIH=VCC	13 SP	75		ΚΩ


0.

DC Electrical Characteristics for 5V Operation 4.5.

(Under Recommended Operation Conditions and VCC=4./5~5.25, IJ=0°C to +115°C)						
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
VIL	Input low voltage	COMS			0.3*VCC	V
VIH	Input high voltage	COMS	0.7*VCC			V
VIL	Input low voltage	TTL			0.8	V
VIH	Input high voltage	TTL	2.0			V
VT-	Schmitt trigger negative going threshold voltage	CMOS		1.78		V
VT+	Schmitt trigger positive going threshold voltage	COMS		3.00		V
VT-	Schmitt trigger negative going threshold voltage	TTL		1.10		V
VT+	Schmitt trigger positive going threshold voltage	TTL		1.90		V
VOL	Output low voltage	IOL=2,4,8,16,24mA			0.4	V
VOH	Output high voltage	IOH=2,4,8,16,24 mA	3.5			V
RI	Input pull-up / down resistance	VIL=0V or VIH=VCC		50		KΩ

(Under Decommonded On	anotion	Conditions	$1 V_{CC} = 4.75 + 5.25 T_{I} = 0^{\circ}C_{I} + 115^{\circ}C_{I}$
(Under Recommended Of	eration	Conditions an	nd VCC= $4.75 \sim 5.25$, TJ= 0° C to $+115^{\circ}$ C)

5. PACKAGE DIMENSIONS

Symbol\Unit	Inch (Base)	MM (Base)
А	0.154 (Min) – 0.160(Max)	3.92 (Min) – 4.06 (Max)
A1	0.010 (Min)	0.25 (Min)
A2	0.127 +/-0.003	3.22 +/- 0.08
b	0.010 (Min) – 0.014(Max)	0.25(Min) – 0.35(Max)
с	.005 (Min) – 0.009 (Max)	0.13(Min) – 0.25(Max)
D	1.102+/-0.002	28.000+/-0.10
E	1.102+/-0.002	28.000+/-0.10
e	0.026 (Ref)	0.65 (Ref)
HD	1.228 +/- 0.01	31.20 +/- 0.25
HE	1.228 +/- 0.01	31.20 +/- 0.25
L	0.031+/-0.006	0.80+/-0.15
L1	0.063(Ref)	1.60(Ref)
θ	0 - 7.0°	0 - 7.0°

0-7.0°

6. ORDER INFORMATION

Order Code	Temperature	Package	Speed
SD1010	Commercial	160-pin PQFP	100MHz
	0° C ~ 70° C	28 x 28 (mm)	

SmartASIC, Inc.

WORLDWIDE OFFICES

U.S.A. & Europe 525 Race St. Suite 250 San Jose, CA 95126 U.S.A. Tel : 1-408-283-5098 Fax : 1-408-283-5099

Asia Pacific 3F, No. 68, Chou-Tze St. Nei-Hu Dist. Taipei 114, Taiwan R.O.C. Tel : 886-2-8797-7889 Fax : 886-2-8797-6829

@Copyright 1999, SmartASIC, Inc.

This information in this document is subject to change without notice. SmartASIC subjects its products to normal quality control sampling techniques which are intended to provide an assurance of high quality products suitable for usual commercial applications. SmartASIC does not do testing appropriate to provide 100% product quality assurance and does not assume any liability for consequential or incidental arising from any use of its products. If such products are to be used in applications in which personal injury might occur from failure, purchaser must do its own quality assurance testing appropriate to such applications.