

Low Droop Rate/Accurate Sample-and-Hold Amplifiers

low droop rate with no penalty in acquisition time. The use of bi-

polar transistors achieves a low change in droop rate over the

operating temperature range.

SMP-10/SMP-11

Continued

FEATURES

SMP-10

- Low Droop Rate 5.0µV/ms
- High Sample/Hold Current Ratio 2 x 10⁹

SMP-11

- Low Droop Rate Over Temperature 2400µV/ms
- High Sample/Hold Current Ratio 1.7 x 10⁸

BOTH SMP-10 AND SMP-11

- Fast Acquisition Time, 10V Step to 0.1% 3.5µs
- High Slew Rate 10V/µs
- Low Aperture Time 50ns
- Trimmed for Minimum Zero-Scale Error 0.45mV
- Low Power Dissipation 160mW
- DT), TTL & CMOS Compatible Logic Input
- NA-2420, HA-2425, SHM-IC-1, and AD583 Socket Compatible Available in Die Portra

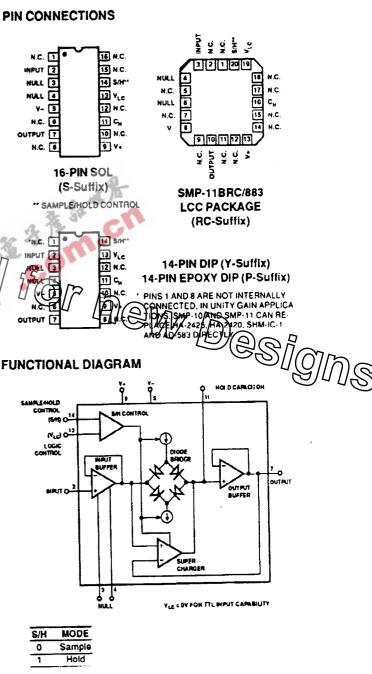
T _A ∉	+25°C			UQ (a
Vzs (mV)	DROOP RATE IN µV/ms	14-PIN DIP HERMETIC	LCC	OPERATING TEMPERATURE RANGE
1.5	20	SMP10AY		MIL
1.5	20	SMP10EY		COM
3.0	50	SMP10FY		COM
1.5	200	SMP11AY*		MIL
3.0	500	SMP11BY*	SMP11BRC/883	MIL
1.5	200	SMP11EY	-	COM
3.0	500	SMP11FY	-	COM
7.0	900	SMP11GY	-	COM
7.0	900	SMP11GS	-	XIND
7.0	900	SMP11GP		XIND

For devices processed in total compliance to MIL-STD-883, add /883 after part number. Consult factory for 883 data sheet

Burn-in is available on commercial and industrial temperature range parts in CerDIP, plastic DIP, and TO-can packages.

GENERAL DESCRIPTION

The SMP-10/11 are precision sample-and-hold amplifiers that provide the high accuracy, the low droop rate and the fast acquisition time required in data acquisition and signal processing systems. Both devices are essentially noninverting unity gain circuits consisting of two very high input impedance buffer amplifiers connected together by a diode bridge switch.


HIGH ACCURACY AND LOW DROOP RATE

The high input impedance and the low droop rates of the SMP-10 and the SMP-11 are achieved by using bipolar Darlington circuits and an ion implant process that creates "super beta" transistors.

The output buffer's input stage converts to a super beta Darlington configuration during the hold mode, which results in a very

REV. C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any intringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

Manufactured under the following patents: 4,109,215 and 4,142,117.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Fax: 617/326-8703 Twx: 710/394-6577 Tel: 617/329-4700 Cable: ANALOG NORWOODMASS Telex: 924491

GENERAL DESCRIPTION Continued

FAST ACQUISITION

A unique super charger provides up to 50mA of charging current to the hold capacitor, which results in smooth, fast charging with minimum noise. As the hold capacitor voltage nears its final value, the low current diode bridge controls the final settling time. This unique combination of linear functions in a monolithic circuit enables the system designer to achieve superior performance.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage (V+ minus V-)	
Derate Above 100°C	
Input Voltage	Equal to Supply Voltage
Logic and Logic Reference	
Voltage	Equal to Supply Voltage
Output Short-Circuit Duration	
Hold Capacitor Short-Circuit Duration	60 sec
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 60 sec)	

Operating Temperature Range

SMP-10AY	-55°C to +125°						
SMP-10EY, FY		0°(C to +70°C				
SMP-11AY, BY, BRC		55°C to +125°C					
SMP-11EY, FY, GY		0°C to +70°C					
SMP11GS, GP		40°C	C to +85°C				
Junction Temperature (Tj)		–65°C	to +150°C				
PACKAGE TYPE	0 41 · •						
	e (Note 2)	е к	UNITS				
14-Pin Hermetic DIP (Y)	108	16	•C/W				
14-Pin Hermetic DIP (Y)	108	16	•C/W				

NOTES:

1. Absolute ratings apply to both DICE and packaged parts, unless otherwise noted.

 Θ_{jA} is specified for worst case mounting conditions, i.e., Θ_{jA} is specified for device in socket for CerDIP and LCC packages.

٦Ē	ſĘĊ	TRIC	AL CHA	RACTERISTICS	at $V_S = \pm 15V$, $C_H = 0.005\mu F$, V _{LC} connected to ground,	T _A = +25°C, unless otherwise noted.
----	-----	------	--------	--------------	---	--	---

		2		SMP-10A SMP-11A			SMP-10 SMP-118			SMP-110	;	
PARAMETER	> standel	Dephyleithons	MIN	TYP	MAX	MIN	ТҮР	MAX	МІМ	TYP	MAX	UNITS
Zero-Scale Error (Hold Mode)	Vzs	VIN- 0)@ <i>[</i> m,	~ ^{0,45}	1.5	6 X	0.60	3.0	-	1.5	7.0	m۷
Input Bias Current	1 ₈	V _{IN} = 0	<i>∽u</i> ∐{	O/2		5	55	90	-	90	160	nA
Leakage (Droop) Current	IDR	SMP-10 SMP-11		46	1.00	I.	ন্যতি	0.25	-	-	- 4.5	nA
Droop Rate	dV _{CH} ∕dt	SMP-10 SMP-11		5 60	20 200	-	<u> </u>			1/7 80/	900	μV/ms
Input Resistance	R _{IN}	(Note 1)	2.0	3.0	-	1.4	2.5			2.0		<u>न)</u> क्स
Voltage Gain	Av	Sample Mode $V_{IN} = \pm 10V, R_L = 5k\Omega$ or $V_{IN} = \pm 5V, R_L = 2.5k$	0.99963 W	0.99983	-	0.99953	0.99978	-	0.99940	0.99975	<u> </u>	
Acquisition Time	laq	10V Step to Within 10n of Final Value (0.1%) 10V Step to Within 1.0/	mV	3.5	+	-	3.5	-	-	3.5	-	μs
		of Final Value (0.01%)	-	5.0	-		5.0	-	-	5.0	-	μs
Aperture Time	lap			50	-	-	50	-	-	50	-	ns
Hold Mode Settling Time	l _{Hm}		IP-10 - IP-11 -	7 1.5	-	-	7 1.5	-	-	7 1.5	-	μs
Charge Transfer	Ot	V _{IN} = 0 V _{S/H} = 3.5V	-	5	-	-	5	-	_	5	-	pC
Slew Rate	SR	$V_{IN} = \pm 10V$ R _L = 2.5kΩ	-	10	-	-	10	-	-	10	_	¥/µs
Hold Capacitor Charging Current	Існ	V _{IN} - V _{OUT} ≥±3V	30	50	-	20	50	-	-	50	-	mΑ
Sample/Hold Current Ratio	ICH/IDA	SMP SMP		2x10 ⁹ 1.7x10 ⁸	-	8x10 ⁷	8x10 ⁸ 1.5x10 ⁸	-	-	1.5x10 ⁸	-	mA/mA
Feedthrough Attenuation Ratio	F _A	Input = $20V_{p-p}$ 1kHz R _E = 5k Ω , (Note 1)	86	98	-	80	90	-	-	90	-	dB
Full Power Bandwidth	Fp	±10Vp-p (Dissipation Limited)	-	100	-	-	100	_		100	-	kHz

2

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $C_H = 0.005\mu$ F, V_{LC} connected to ground, $T_A = +25^{\circ}$ C, unless otherwise noted. Continued

PARAMETER			SMP-10A/E SMP-11A/E			SMP-10F SMP-11B/F			SMP-11G			
	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Voltage Range and/or Output Voltage Swing		R _L = 2.5kΩ	±11	±11.5	-	±10.5	±11.5	-	±10.5	±11.5	-	v
Output Resistance	Ro		-	0.15	-		0.15		-	0.15	-	Ω
Power Supply Rejection Ratio	PSRR	Sample Mode V _S = ±9V to ±18V	82	92	-	77	92	-	72	92	-	dB
Power Consumption (DC)	PD	Sample Mode V _{IN} = 0	-	160	180	-	170	210	-	180	240	mW

NOTES:

1. Guaranteed by design.

2. Measured 500µs after hold command.

ELECTRICAL CHARACTERISTICS – SMP-10 ONLY at $V_S = \pm 15V$, $C_H = 0.005\mu$ F, $V_{LC} = 0V$, $T_A = +25^{\circ}$ C, device fully warmed up, unless otherwise noted.

л <u> </u>		1	S	MP-10/	A/E	:			
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX ~	UNITS
How ster 20	VHS	V _{IN} = 0	-1.0	+1.5	+4.0	-3.0	+1.5	+6.0	٣V
Linearity Error		$V_{IN} = \pm 10V, R_L = 5k\Omega$	a.	0.005	21	-	0.007	~	% of 10V
Output Noise		to Destriz Sample Rode	32	40	-	-	50	-	µVrms

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $C_H = 0.005\mu$ F, V_{LC} characteristics at $V_S = \pm 15V$, $C_H = 0.005\mu$ F, V_{LC} characteristics at $V_S = \pm 15V$, $C_H = 0.005\mu$ F, V_{LC} characteristics at $V_S = \pm 15V$, $C_H = 0.005\mu$ F, V_{LC} characteristics at $V_S = \pm 15V$, $C_H = 0.005\mu$ F, V_{LC} characteristics at $V_S = \pm 15V$, $C_H = 0.005\mu$ F, V_{LC} characteristics at $V_S = \pm 15V$, $C_H = 0.005\mu$ F, V_{LC} characteristics at $V_S = \pm 15V$, $C_H = 0.005\mu$ F, V_{LC} characteristics at $V_S = \pm 15V$, $C_H = 0.005\mu$ F, V_{LC} characteristics at $V_S = \pm 15V$, $C_H = 0.005\mu$ F, V_{LC} characteristics at $V_S = \pm 15V$, $C_H = 0.005\mu$ F, V_{LC} characteristics at $V_S = \pm 15V$.

<u></u>								3 MV	smp.1	5	
SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	44		SAIL
Vzs	V _{IN} = 0, V _{S/H} = 3.5V, (Note 1	i) -	0.75	2.0		1.0	4.0		2.7	10	
l ₈	V _{IN} = OV	-	50	90	-	80	140	-	120	250	nA
IDR	SMP-10 SMP-11	-	0.05 0.5	0.25 1.8	-	0.080 0.6	0.65 2.8	-	- 0.7	- 5	nA
dV _{CH} ∕dī	SMP-10 SMP11	-	10 100	50 360	-	16 120	130 560	-	140	1000	µV/ms
Av	Sample Mode $V_{IN} = \pm 10V$, $R_L = 5k\Omega$ or $V_{IN} = \pm 5V$, $R_L = 2.5k\Omega$	0.99955	0.99976	-	0.99950	0.99972	-	0.99930	0.99970	-	v/v
PSRR	Sample Mode V _S = ±9V to ±18V	80	90	-	75	80	-	70	90	-	dB
lic -	V _{LC} ≠0V	-	-1	-2	-	-1	-3	-	-1	~4	μА
lasi	Sample Mode V _{3/H} = 0.6V	-	-5	-15	-	-5	-15	-	-5	-15	μΑ
'S/H	Hold Mode V _{S/H} = 5.0V	-	0.2	+	-	0.2	-	-	0.2	-	n A
VTH		0.8	1.3	2.0	0.8	1.3	2.0	0.8	1.3	2.0	v
	V _{2S} I _D IDR dV _{CH} /dt A _V PSRR I _{LC} I _{S/H}	$\label{eq:V2S} \begin{split} V_{IN} &= 0, V_{S/H} = 3.5V, (\text{Note} + 1) \\ I_B & V_{IN} = 0V \\ I_{DR} & SMP \cdot 10 \\ SMP \cdot 10 \\ SMP \cdot 11 \\ dV_{CH}/dt & SMP \cdot 10 \\ SMP $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c } \hline SYMBOL & CONDITIONS & MIN & TYP \\ \hline V_{2S} & V_{IN} = 0, V_{S/H} = 3.5V, (Note 1) & - & 0.75 \\ \hline I_D & V_{IN} = 0V & - & 50 \\ \hline I_{DR} & SMP \cdot 10 & - & 0.05 \\ \hline SMP \cdot 11 & - & 0.5 \\ \hline dV_{CH}/dt & SMP \cdot 10 & - & 10 \\ \hline SMP \cdot 11 & - & 100 \\ \hline A_V & V_{IN} = \pm 10V, R_L = 5k\Omega & 0.99955 & 0.99976 \\ \hline or V_{IN} = \pm 5V, R_L = 2.5k\Omega \\ \hline PSRR & V_S = \pm 9V to \pm 18V & 80 \\ \hline P_{LC} & V_{LC} = 0V & - & -1 \\ \hline I_{S/H} & V_{S/H} = 0.6V & - & -5 \\ \hline I_{S/H} & V_{S/H} = 5.0V & - & 0.2 \\ \hline \end{tabular}$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SYMBOL CONDITIONS MIN TYP MAX MIN TYP MAX V_{2S} $V_{IN} = 0.V_{S/H} = 3.5V_{.}$ (Note 1) - 0.75 2.0 - 1.0 4.0 I_B $V_{IN} = 0.V_{S/H} = 3.5V_{.}$ (Note 1) - 0.75 2.0 - 1.0 4.0 I_B $V_{IN} = 0.V$ - 50 90 - 80 140 I_{DR} SMP-10 - 0.05 0.25 - 0.080 0.65 I_{DR} SMP-10 - 0.5 1.8 - 0.6 2.8 dV_{CH}/dt SMP-10 - 10 50 - 16 130 dV_{CH}/dt SMP-10 - 100 360 - 120 560 Av $V_{IN} = \pm 10V_{.}R_L = 5k\Omega$ 0.99955 0.99976 - 0.99950 0.99972 - $V_{IN} = \pm 15V_{.}R_L = 2.5k\Omega$ 0.99955 0.99976 - 75 80 -	SYMBOL CONDITIONS MIN TYP MAX MIN	SYMBOL CONDITIONS MIN TYP MAX MIN TYP TYP MAX	SYMBOL CONDITIONS MIN TYP MAX MIN TYP TO TO <t< td=""></t<>

NOTE:

1. Measured 500µs after hold command.

|

ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $C_H = 0.005\mu$ F, V_{LC} connected to ground, $-55^{\circ}C \le T_A \le + 125^{\circ}C$, unless otherwise noted.

				SMP-10 SMP-11			SMP-10 SMP-11	В		
ARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
ero-Scale Error	V _{Z6}	V _{IN} = 0, V _{S/H} = 3.5V, (Note 1)	_	1.25	3.0	_	1.60	· 5.5	۳V	
put Bias Current	18	V _{IN} = OV	-	90	180		160	280	nA	
eakage (Droop) Current	DR	T _A ≕ −55°C SMP-10 T _A = †125°C T _A ≕ Full Range SMP-11		0.050 12 12	0.50 20 20	-	0.080 16 16	1.22 25 25	nA	
Droop Rate	dV _{CH} /dt	$T_A = -55^{\circ}C$ SMP-10 $T_A = + 125^{\circ}C$ SMP-11 $T_A = Full Range$ SMP-11		10 2400 2400	100 4000 4000		16 3200 3200	250 5000 5000	µV/ms	
oltage Gain	Av	Sample Mode $V_{IN} = \pm 10V, R_L = 5k(1)$ or $V_{IN} = \pm 5V, R_L = 2.5k(1)$	0.99950	0.99972		0.99940	0.99968	-	₩/₩	
Power Supply Rejection Ratio	PSRR	Sample Mode V _S = ±9V to ± 18V	78	88	-	72	90		٥B	
ddig Control Input Current	ارد	V _{LC} = 0V	-	-1	-3	<u></u>	-1	5	Α پ	
	$\widehat{\mathcal{M}}_{\mathcal{T}}$	Sample Mode V _{S/H} = 0.6V	-	-5	-15	13. 14	5	- 15	μΑ	
	<u> </u>))Hotermode		0.2	12	C -	0.2		nA	
Differential Logic Threshold	V _{TH}	THENO	201	ج م	2.0	0.6	1.3	2.0	V	
NOTES: Measured 500µs after hold co BURN-IN CIRCUIT	ommand,	-2	G	1	א]ע	Me	9W	7 [[) _{es}	
	H 13 12 H 10 9 6	R ————————————————————————————————————								
	PER BOARD)									

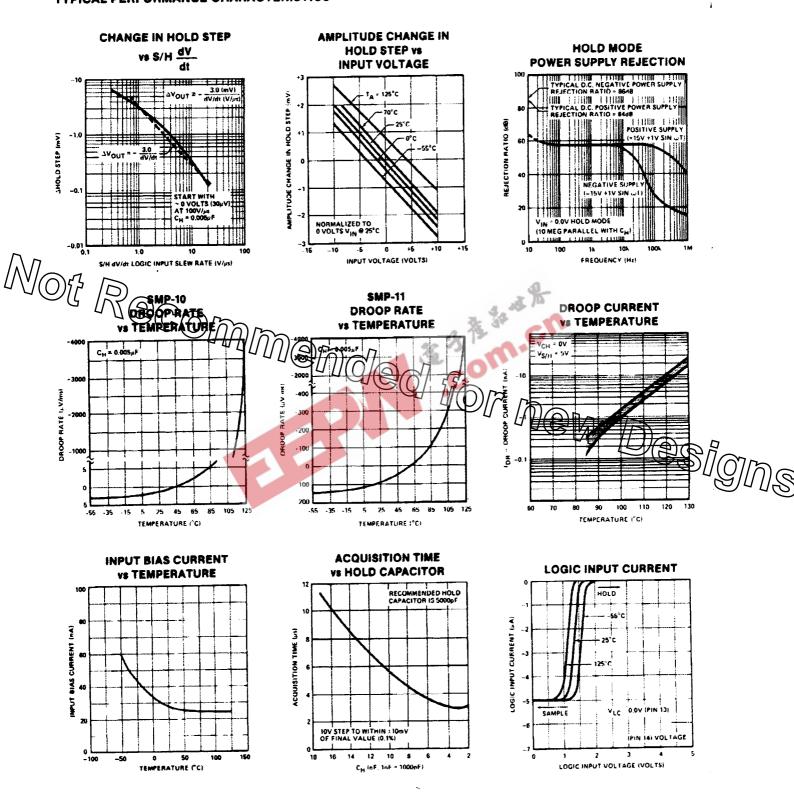
ß

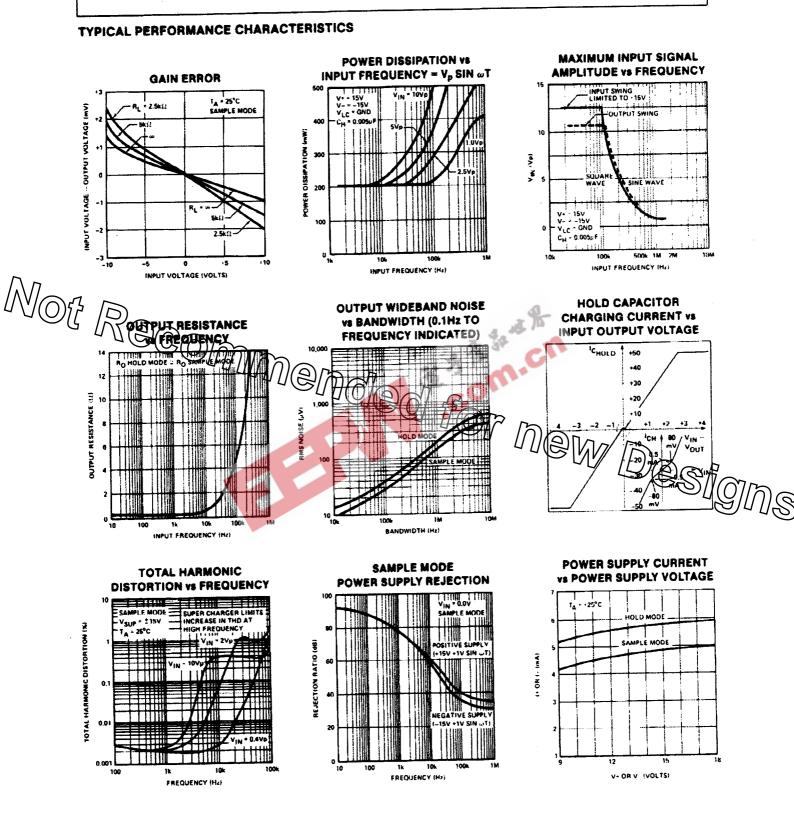
SMP-10/SMP-11 **DICE CHARACTERISTICS** 2. INPUT 2. INPUT 1 1 1 3. NULL 4. NULL 5. NEGATIVE SUPPLY 3. NULL 4. NULL 5. NEGATIVE SUPPLY (SUBSTRATE) (SUBSTRATE) OUTPUT 7. OUTPUT POSITIVE SUPPLY 9. POSITIVE SUPPLY 9. 11. HOLD CAPACITOR (CH) 11. HOLD CAPACITOR (CH) 13. LOGIC THRESHOLD 13. LOGIC THRESHOLD CONTROL (VLC) 14. SAMPLE/HOLD COMMAND CONTROL (VLC) SAMPLE/HOLD COMMAND 14. DIE SIZE 0.088 - 0.083 inch, 7304 sq. mils (2.235 / 2.108 mm, 4.711 sq. mm) SMP-11 SMP-10

WAFER TEST LIMITS at $V_S = \pm 15V$, $C_H = 0.005\mu$ F, V_{LC} connected to ground, $T_A = 25^{\circ}$ C, unless otherwise noted.

ARAMETER	SYMBOL	CONDITIONS	SMP-10N SMP-11N LIMIT	SMP-10G SMP-11G LIMIT	UNITS
eroscalie Erra	V _{ZS}	V _{IN} = 0, V _{S/H} = 3.5V Hold Mode, (Note 2)	1.5	3.0	mV MAX
nput Bias Current		VIN = 0V	60	90	n A MAX
eakage : Droop: Current			0.10	0.25	nA MAX
Droop Rate	dV _{CH} /dt	SMP-10 SMP-11	20 200	50 500	µV/ms MAX
Voltage Gain	Av	Sample Mode V _{IN} = ± 10V or V _{IN} = ± 5V	0.59963		
Iold Capacitor Charging Current	¹ CH	VIN " VOUT > 73V	30	20	L Contraction
nput Voltage Range and/or Output Voltage Swing		R _L = 2.5k12	j. 11	± 10.5	V MIN
Power Supply Rejection Ratio	PSRR	Sample Mode V _S = ±9V to ±18V	82	77	dB MIN
Power Consumption	Po	Sample Mode V _{IN} = 0	180	210	mW MAX
Logic Control Input Current	ILC.	V _{LC} = 0V	-2	- 3	μΑ ΜΑΧ
<u></u>	<u> </u>	Sample Mode V _{S/H} == 0.6V	15	- 15	μΑ ΜΑΧ
Logic Input	1 _{5/H}	Hold Mode V _{5/H} = 5V	0	0	nA MAX
Differential Logic Threshold	V _{TH}	V _{LC} = 0	2.0 0.8	2.0 0.8	V MAX V MIN

NOTES:

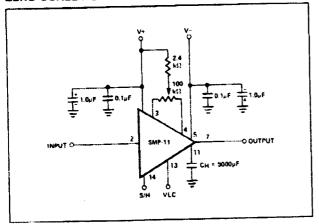

1. Measured 500µs after hold command.

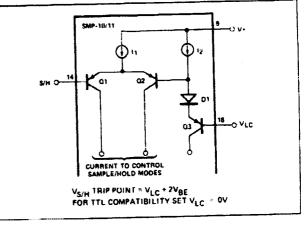

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL ELECTRICAL CHARACTERISTICS at $V_S = \pm 15V$, $C_H = 0.005\mu$ F, V_{LC} connected to ground, $T_A = 25^{\circ}$ C, unless otherwise noted.


			SMP-10N	SMP-10G	
PARAMETER	SYMBOL	CONDITIONS	SMP-11N TYPICAL	SMP-11G TYPICAL	UNITS
Acquisition Time	tag	10V step to 0.1% of final value	3.5	3.5	μ\$
Aperture Time	tap		50	50	ns
Charge Transfer	Q,	V _{IN} = 0, V _{S/H} = 3.5V	5	5	pC
Siew Rate	SR	$V_{1N} = \pm 10V, R_L = 2.5k(1)$	10	10	V/µs

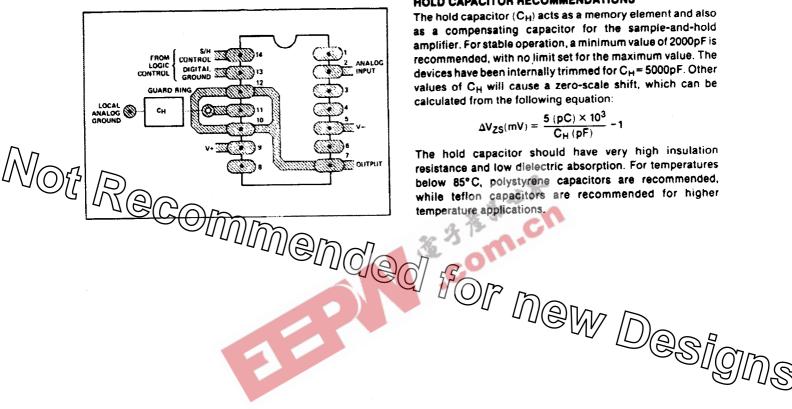
TYPICAL PERFORMANCE CHARACTERISTICS


SMP-10/SMP-11 ACQUISITION TIMES


APPLICATIONS INFORMATION

During the null adjustment, the amplifier should be switched continuously between the "sample" and "hold" mode. The error should be adjusted to read zero when the unit is in the "hold" mode. In this way, both offset voltage errors and charge transfer errors are adjusted to zero. As shown in the Figure, the sample/hold mode control s accomplished by steering the current (i_1) through Q1 of Q2 thus providing high-speed switching and a predictable logic threshold. For TTL and DTL interface, simply ground V_{LC} (Pin 13). For CMOS, HTL and HNIL interface, the appropriate

ZERO-SCALE NULL ADJUSTMENT


LOGIC CONTROL

threshold voltage, allowing for 2 diode drops for D1 and $V_{\mbox{\scriptsize BE}}$ of Q3, should be applied to VLC.

For proper operation, the VLC (logic control) must always be at least 3.5V below the positive supply and 2.0V above the negative supply.

Sample-and-hold control voltage (S/H) must always be at least 2.8V above the negative supply.

GUARDING AND GROUNDING LAYOUT

The use of a ground plane is strongly recommended to minimize ground path resistances. Separate analog and digital grounds should be used, and it is advisable to keep these two ground systems isolated until they are tied back to the common system ground. Digital currents should not flow back to the system ground through the analog ground path.

HOLD CAPACITOR RECOMMENDATIONS

Δ

The hold capacitor (C_H) acts as a memory element and also as a compensating capacitor for the sample-and-hold amplifier. For stable operation, a minimum value of 2000pF is recommended, with no limit set for the maximum value. The devices have been internally trimmed for $C_H = 5000 pF$. Other values of C_H will cause a zero-scale shift, which can be calculated from the following equation:

$$V_{ZS}(mV) = \frac{5 (pC) \times 10^3}{C_H (pF)} - 1$$

The hold capacitor should have very high insulation resistance and low dielectric absorption. For temperatures below 85°C, polystyrene capacitors are recommended, while teflon capacitors are recommended for higher temperature applications.

REV. C