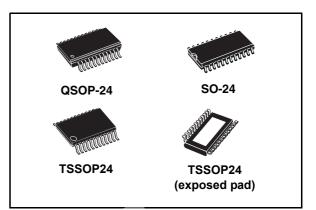


STP16DP05

Low voltage 16-bit constant current LED sink driver with outputs error detection


Features

- Low voltage power supply down to 3 V
- 16 constant current output channels
- Adjustable output current through external resistor
- Short and open output error detection
- Serial Data IN/Parallel data OUT
- 3.3 V micro driver-able
- Output current: 5-100 mA
- 30 MHz clock frequency
- Available in high thermal efficiency TSSOP exposed pad
- ESD protection 2.5 kV HBM, 200 V MM

Description

The STP16DP05 is a monolithic, low voltage, low current power 16-bit shift register designed for LED panel displays. The device contains a 16-bit serial-in, parallel-out shift register that feeds a 16-bitD-type storage register. In the output stage, sixteen regulated current sources were designed to provide 5-100 mA constant current to drive the LEDs.

The STP16DP05 features open and short LED detections on the outputs. The STP16DP05 is backward compatible with STP16C/L596. The detection circuit checks 3 different conditions that can occur on the output line: short to GND, short to V_O or open line.

The data detection results are loaded in the shift register and shifted out via the serial line output.

The detection functionality is implemented without increasing the pin count number, through a secondary function of the output enable and latch pin (DM1 and DM2 respectively), a dedicated logic sequence allows the device to enter or leave from detection mode. Through an external resistor, users can adjust the STP16DP05 output current, controlling in this way the light intensity of LEDs, in addition, user can adjust LED's brightness intensity from 0 % to 100 % via <u>OE/DM2</u> pin.

The STP16DP05 guarantees a 20 V output driving capability, allowing users to connect more LEDs in series. The high clock frequency, 30 MHz, makes the device suitable for high data rate transmission. The 3.3 V voltage supply is well useful for applications that interface any 3.3V micro. Compared with a standard TSSOP package, the TSSOP exposed pad increases heat dissipation capability by a 2.5 factor.

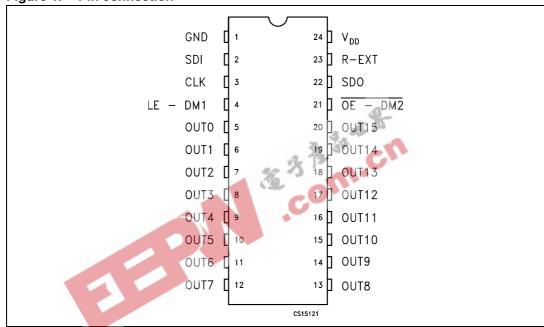
Order codes	Package	Packaging				
STP16DP05MTR	SO-24 (tape and reel)	1000 parts per reel				
STP16DP05TTR	TSSOP24 (tape and reel)	2500 parts per reel				
STP16DP05XTTR	TSSOP24 exposed pad (tape and reel)	2500 parts per reel				
STP16DP05PTR	QSOP-24	2500 parts per reel				

Table 1. Device summary

February 2008

Contents

1	Sum	mmary description				
	1.1	Pin connection and description				
2	Elect	rical ratings				
	2.1	Absolute maximum ratings 4				
	2.2	Thermal data 4				
	2.3	Recommended operating conditions 5				
3	Elect	rical characteristics6				
4	Equi	valent circuit and outputs8				
5	Timir	ng diagrams				
6	Туріс	ng diagrams				
7	Dete	ction mode functionality				
	7.1	Phase one: "entering in detection mode" 16				
	7.2	Phase two: "error detection" 17				
	7.3	Phase three: "resuming to normal mode" 19				
	7.4	Error detection conditions 19				
8	Pack	age mechanical data 21				
9	Revis	sion history				



1 Summary description

Table 2. Typical current accuracy

Output voltage	Current a	accuracy	Output current V _{DD}		Temperature	
output voltage	Between bits	Between ICs	ouputourient	- 00		
≥ 1.3 V	±1.5 %	±5 %	20 to 100 mA	3.3 V to 5 V	25 °C	

1.1 Pin connection and description

Figure 1. Pin connection

Note:

Table 3. Pin description

The exposed pad is electrically not connected

	i ili accompile	
Pin N°	Symbol	Name and function
1	GND	Ground terminal
2	SDI	Serial data input terminal
3	CLK	Clock input terminal
4	LE-DM1	Latch input terminal - Detect mode 1 (see operation principle)
5-20	OUT 0-15	Output terminal
21	OE-DM2	Input terminal of output enable (active low) - Detect mode 1 (see operation principle)
22	SDO	Serial data out terminal
23	R-EXT	Input terminal of an external resistor for constant current programing
24	V _{DD}	Supply voltage terminal

Electrical ratings 2

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the "absolute maximum ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 4.Absolute maximum ratings

Symbol	Parameter	Value	Unit		
V _{DD}	Supply voltage	0 to 7	V		
Vo	Output voltage	-0.5 to 20	V		
Ι _Ο	Output current	100	mA		
VI	Input voltage	-0.4 to V _{DD}	V		
I _{GND}	GND terminal current	1600	mA		
f _{CLK}	Clock frequency	50	MHz		
Thermal data					
Table 5.	Thermal data				

2.2 **Thermal data**

Table 5. Thermal data

Symbol	Parameter	Value	Unit	
T _{OPR}	Operating temperature range		-40 to +125	°C
T _{STG}	Storage temperature range		-55 to +150	°C
		SO-24	60	°C/W
		TSSOP24	85	°C/W
R _{thJC} Thermal r	Thermal resistance junction-case	TSSOP24 ⁽¹⁾ Exposed Pad	37.5	°C/W
		QSOP-24	72	°C/W

1. The exposed pad should be soldered directly to the PCB to realize the thermal benefits.

2.3 Recommended operating conditions

Table 0.	Recommended operating conditions					
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{DD}	Supply voltage		3.0		5.5	V
Vo	Output voltage				20	V
Ι _Ο	Output current	OUTn	5		100	mA
I _{OH}	Output current	SERIAL-OUT			+1	mA
I _{OL}	Output current	SERIAL-OUT			-1	mA
V _{IH}	Input voltage		0.7V _{DD}		V _{DD} +0.3	V
V _{IL}	Input voltage		-0.3		0.3V _{DD}	V
t _{wLAT}	LE\DM1 pulse width		20			ns
t _{wCLK}	CLK pulse width		20			ns
t _{wEN}	OE\DM2 pulse width	V _{DD} = 3.0 V to 5.0 V	200			ns
t _{SETUP(D)}	Setup time for DATA	$v_{\rm DD} = 3.0$ v to 5.0 v	20			ns
t _{HOLD(D)}	Hold time for DATA]	15	•		ns
t _{SETUP(L)}	Setup time for LATCH	、礼	15	0		ns
f _{CLK}	Clock frequency	Cascade operation (1)	0.		30	MHz

Table 6. Recommended operating conditions

 If the device is connected in cascade, it may not be possible achieve the maximum data transfer. Please consider the timings carefully.

Electrical characteristics 3

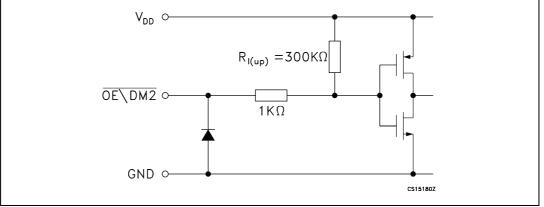
Table 7. **Electrical characteristics**

 $(V_{DD} = 3.3 \text{ V to 5 V}, \text{ T} = 25 \text{ °C}, \text{ unless otherwise specified.})$

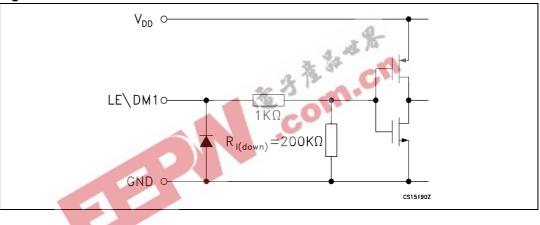
Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{IH}	Input voltage high level		0.7V _{DD}		V _{DD}	V
V _{IL}	Input voltage low level		GND		$0.3V_{DD}$	V
I _{ОН}	Output leakage current	V _{OH} = 20 V			10	μA
V _{OL}	Output voltage (Serial-OUT)	I _{OL} = 1 mA			0.4	v
V _{OH}	Output voltage (Serial-OUT)	I _{OH} = -1 mA	$V_{OH} - V_{DD} = -0.4 V$			v
I _{OL1}		V_{O} = 0.3 V, R_{ext} = 3.9 k Ω	4.25	5	5.75	
I _{OL2}	Output current	V_{O} = 0.3 V, R_{ext} = 970 Ω	19	20	21	mA
I _{OL3}		V_{O} = 1.3 V, R_{ext} = 190 Ω	96	100	104	
ΔI_{OL1}	Output current error	V_{O} = 0.3 VR _{EXT} = 3.9 k Ω	4.4.15	± 5	± 8	
ΔI_{OL2}	between bit	V _O = 0.3 VR _{EXT} = 970 Ω	· 雅 ···	± 1.5	± 3	%
ΔI_{OL3}	(All Output ON)	V _O = 1.3 VR _{EXT} =190 Ω		± 1.2	± 3	
R _{SIN(up)}	Pull-up resistor		150	300	600	KΩ
R _{SIN(down)}	Pull-down resistor		100	200	400	KΩ
I _{DD(OFF1)}	Supply current (OFF)	R _{EXT} = 970 OUT 0 to 15 = OFF		4	5	
I _{DD(OFF2)}	Supply current (OTT)	R _{EXT} = 240 OUT 0 to 15 = OFF		11.2	13.5	mA
I _{DD(ON1)}	- Supply current (ON)	R _{EXT} = 970 OUT 0 to 15 = ON		4.5	5	ШA
I _{DD(ON2)}		R _{EXT} = 240 OUT 0 to 15 = ON		11.7	13.5	
Thermal	Thermal protection (1)			170		°C

1. Guaranteed by desing (not tested) The thermal protection switches OFF only the outputs current

Symbol	Parameter	Τε	est conditions		Min	Тур	Max	Unit		
t _{PLH1}	Propagation delay time, CLK- \overline{OUTn} , LE $DM1 = H$, $\overline{OE}DM2 = L$			V _{DD} = 3.3 V V _{DD} = 5 V		70 45	105 65	ns		
	Propagation delay time,	-		$V_{DD} = 3.3 V$		61	90			
t _{PLH2}	$\frac{\text{LE}\text{DM1}}{\text{OE}\text{DM2}} = \text{L}$			V _{DD} = 5 V		41	60	ns		
+	Propagation delay time, OE\DM2-OUTn,	-		V _{DD} = 3.3 V		69	105			
t _{PLH3}	LE DM1 = H			V _{DD} = 5 V		50	70	ns		
t _{PLH}	Propagation delay time,			V _{DD} = 3.3 V		14	20	ns		
PLH	CLK-SDO			V _{DD} = 5 V		8	12	110		
	Propagation delay time,			V _{DD} = 3.3 V		34	50			
t _{PHL1}	$\frac{\text{CLK-}\overline{\text{OUTn}}, \text{ LE}}{\text{OE}} = \text{L}$	V _{DD} = 3.3 V V _{IL} = GND		$V_{DD} = 5 V$		23	35	ns		
	Propagation delay time,	I _O = 20 mA	-	V _{DD} = 3.3 V		27	40			
t _{PHL2}	$\frac{\text{LE}\text{DM1}}{\text{OE}\text{DM2}} = \text{L}$	R _{EXT} = 1 KΩ	_	$V_{DD} = 5 V$		22	32	ns		
	Propagation delay time,		R	V _{DD} = 3.3 V	0	23	35			
t _{PHL3}	OE\DM2-OUTn, LE\DM1 = H		360	V _{DD} = 3.3 V V _{DD} = 5 V		20	30	ns		
t	Propagation delay time,		G	V _{DD} = 3.3 V		15	25	ns		
t _{PHL}	CLK-SDO			$V_{DD} = 5 V$		9	15	115		
	Output rise time			V _{DD} = 3.3 V		42	65			
t _{ON}	10~90% of voltage waveform					V _{DD} = 5 V		35	55	ns
	Output fall time			V _{DD} = 3.3 V		10	16			
t _{OFF}	90~10% of voltage waveform			$V_{DD} = 5 V$		9	14	ns		
t _r	CLK rise time ⁽¹⁾						5000	ns		
t _f	CLK fall time ⁽¹⁾						5000	ns		


	Table 8.	Switching characteristics (V_{DD} = 5 V, T = 25 °C, unless otherwise specified.)
--	----------	---

1. In order to achieve high cascade data transfer, please consider tr/tf timings carefully.



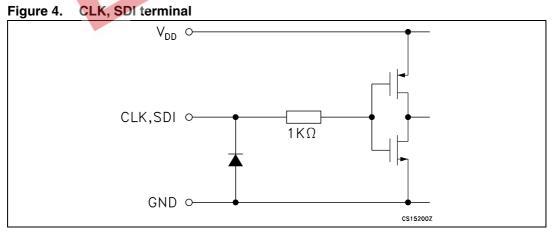

4 Equivalent circuit and outputs

Figure 2. OE\DM2 terminal

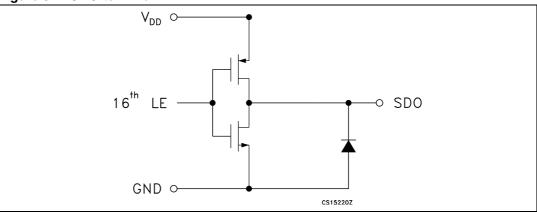
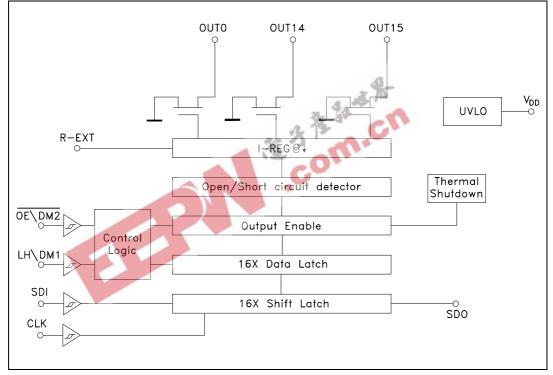


Figure 3. LE\DM1 terminal



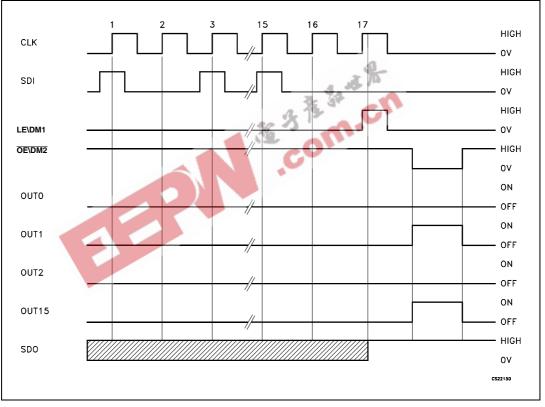
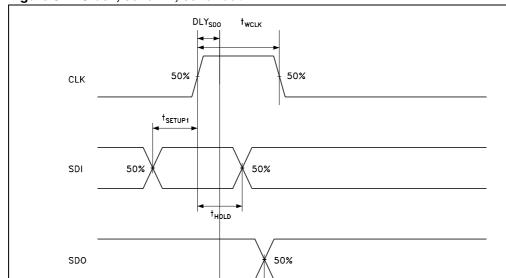

5 Timing diagrams

Table 9. 1	Fruth table
------------	-------------

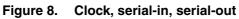
CLOCK	LE\DM1	OE\DM2	SERIAL-IN	OUT0 OUT7 OUT15	SDO
	Н	L	Dn	Dn Dn - 7 Dn -15	Dn - 15
	L	L	Dn + 1	No change	Dn - 14
	Н	L	Dn + 2	Dn + 2 Dn - 5 Dn -13	Dn - 13
L	Х	L	Dn + 3	Dn + 2 Dn - 5 Dn -13	Dn - 13
٦.	Х	Н	Dn + 3	OFF	Dn - 13

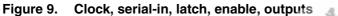
Note:

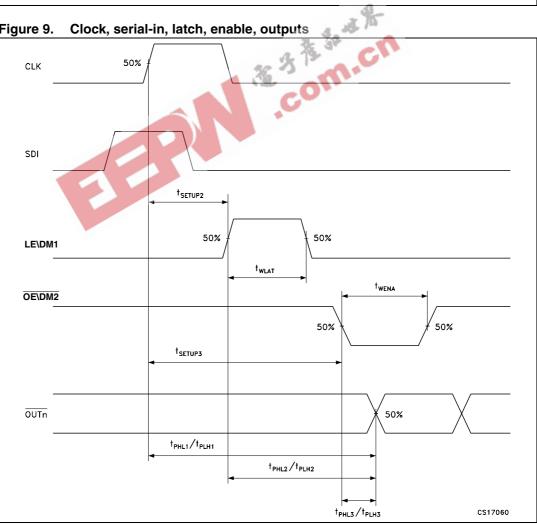
OUTn = ON when Dn = H OUTn = OFF when Dn = L


Note:

The latches circuit holds data when the LE\DM1 terminal is Low.


- 1 When LE\DM1 terminal is at High level, latch circuit hold the data it passes from the input to the output.
- 2 When OE\DM2 terminal is at Low level, output terminals OUT0 to OUT15 respond to the data, either ON or OFF.
- 3 When OE\DM2 terminal is at High level, it switches off all the data on the output terminal.




CS22150

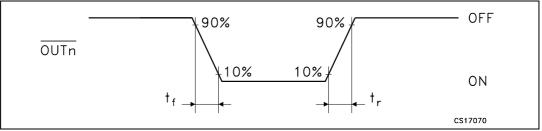

t_{plh} /t_{phl}

Figure 10. Outputs

6 Typical characteristics

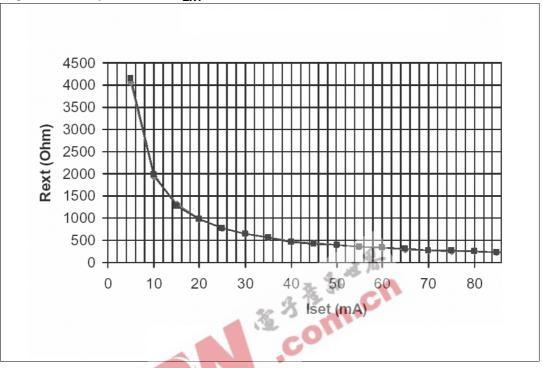
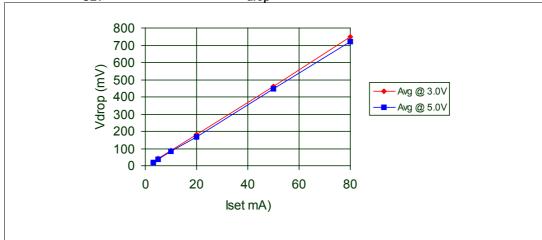
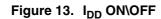


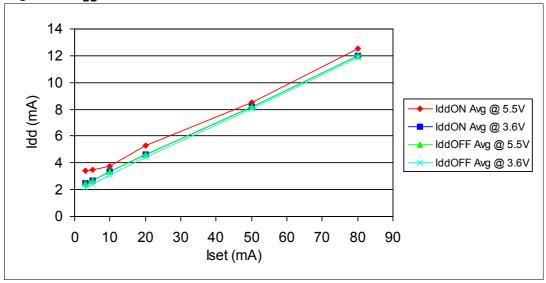
Figure 11. Output current-R_{EXT} resistor

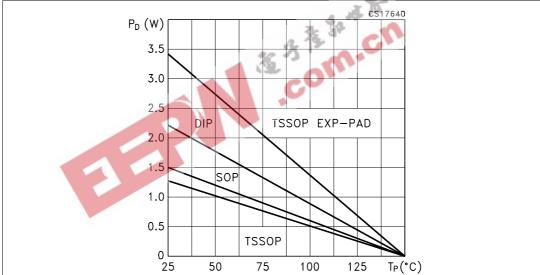

Table 10. Output current-R_{EXT} resistor

Rext (Ω)	Output current (mA)
976	20
780	25
652	30
560	35
488	40
433	45
389	50
354	55
325	60
300	65
278	70
259	75
241	80
229	85
215	90

Conditions:


Temperature = 25 °C, V_{DD} = 3.3 V; 5.0 V, I_{SET} = 3 mA; 5 mA; 10 mA; 20 mA; 50 mA; 80 mA.




Table 11.	I _{SET} vs drop	out voltage (V _{drop})
-----------	--------------------------	----------------------------------

lout (mA)	Avg @ 3.0 V	Avg @ 5.0 V
3	19.33	22.66
5	36.67	40.33
10	77.33	80
20	158.67	157.33
50	406	406
80	692	668

The exposed pad should be soldered to the PBC to realize the thermal benefits.

7 Detection mode functionality

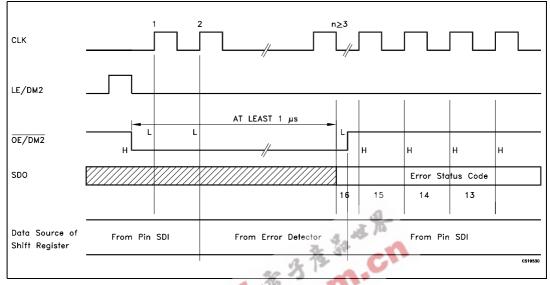
7.1 Phase one: "entering in detection mode"

From the "normal mode" condition the device can switch to the "error mode" by a logic sequence on the $\overline{OE \mid DM2}$ and LE/DM1 pins as showed in the following table and diagram:

	tering in deteo		•		
CLK	1 °	2 °	3°	4 °	5°
OE/DM2	Н	L	Н	Н	Н
LE/DM1	L	L	L	Н	L

Table 12. Entering in detection truth table

Figure 15. Entering in detection timing diagram 2 3 4 5 CLK 5 34 H OE/DM2 Н Н L 32 3 LE/DM1 Н L L CS19510


After these five CLK cycles the device goes into the "error detection mode" and at the 6th rise front of CLK the SDI data are ready for the sampling.

7.2 Phase two: "error detection"

The 16 data bits must be set "1" in order to set ON all the outputs during the detection. The data are latched by LE/DM1 and after that the outputs are ready for the detection process. When the Micro controller switches the $\overline{OE \mid DM2}$ to LOW, the device drives the LEDs in order to analyze if an OPEN or SHORT condition has occurred.

The LEDs status will be detected at least in 1 microsecond and after this time the microcontroller sets \overline{OE} in HIGH state and the output data detection result will go to the microprocessor via SDO.

Detection mode and normal mode use both the same format data. As soon as all the detection data bits are available on the serial line, the device may go back to normal mode of operation. To re-detect the status the device must go back in normal mode and re-entering in error detection mode .

57

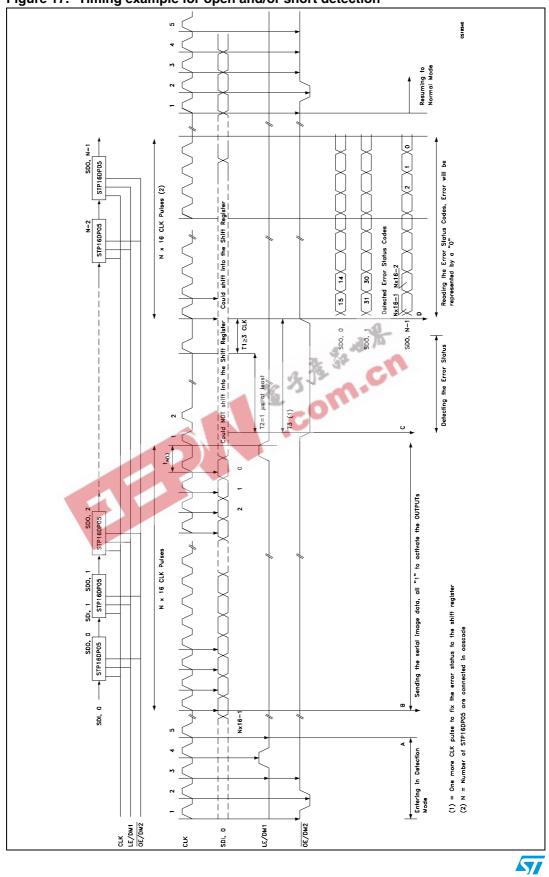


Figure 17. Timing example for open and/or short detection

7.3 Phase three: "resuming to normal mode"

The sequence for re-entering in normal mode is showed in the following Table and diagram:

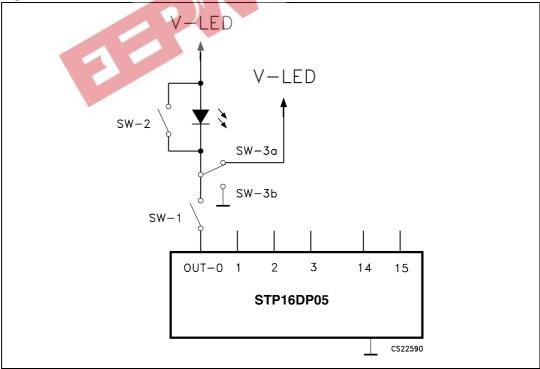
CLK	1°	2 °	3°	4 °	5°
OE/DM2	Н	L	Н	Н	Н
LE/DM1	L	L	L	L	L

Figure 18. Resuming to normal mode timing diagram

Note:

For proper device operation the "Entering in detection" sequence must be follow by a "Resume Mode" sequence, it is not possible to insert consecutive equal sequence.

7.4 Error detection conditions


Table 13. Detection conditions (V_{DD} = 3.3 to 5 V temperature range -40 to 125 °C)

Open line or output short to GND detected	==> $I_{ODEC} \le 0.5 \text{ x } I_O$	No error detected	==> $I_{ODEC} \ge 0.5 \text{ x } I_O$
Short on LED or short to V-LED detected	==> V _O ≥ 2.4 V	No error detected	==> V _O ≤ 2.2 V

4

Note: Where: I_O = the output current programmed by the R_{EXT} , I_{ODEC} = the detected output current in detection mode

Figure 19. Detection circuit

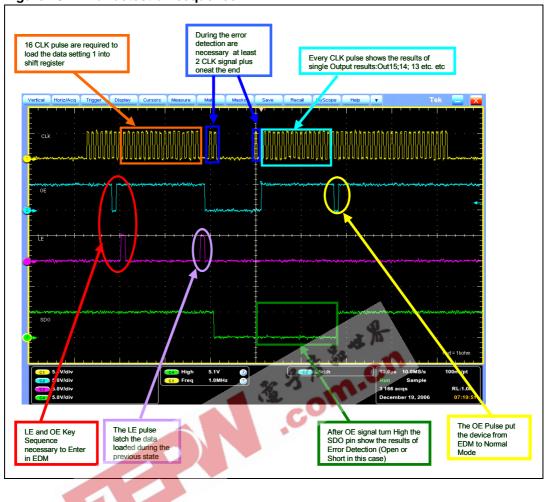
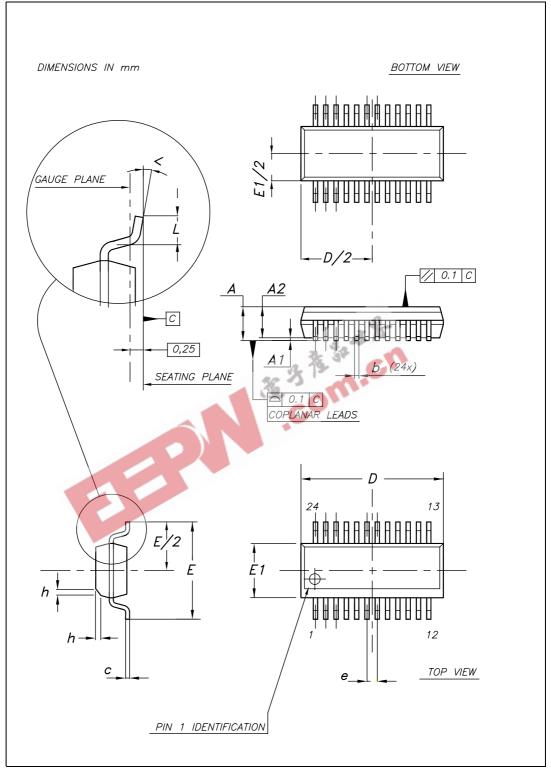


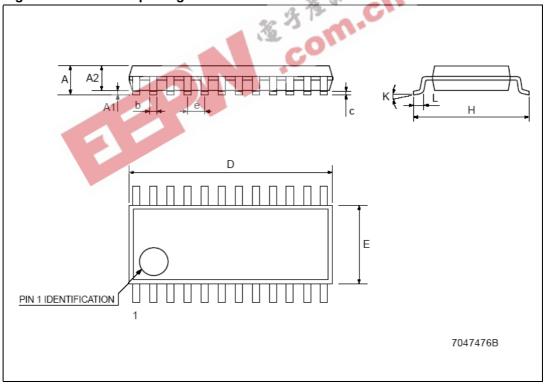
Figure 20. Error detection sequence

8 Package mechanical data


In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Dim		mm.			inch		
Dim.	Min	Тур	Max	Min	Тур	Max	
А	1.54	1.62	1.73	0.061	0.064	0.068	
A1	0.1	0.15	0.25	0.004	0.006	0.010	
A2		1.47			0.058		
b	0.31	0.2		0.012	0.008		
С	0.254	0.17		0.010	0.007		
D	8.56	8.66	8.76	0.337	0.341	0.345	
Е	5.8	6	6.2	0.228	0.236	0.244	
E1	3.8	3.91	4.01	0.150	0.154	0.158	
е		0.635			0.025		
L	0.4	0.635	0.89	0.016	0.025	0.035	
h	0.25	0.33	0.41	0.010	0.013	0.016	
<	8°	0°					

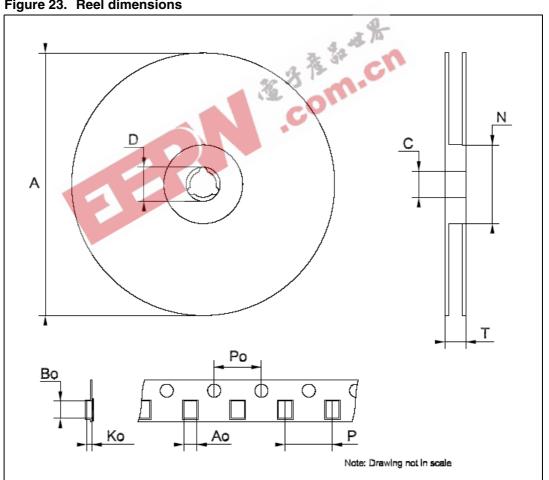
Table 14. QSOP-24 mechanical data



Dim.		mm.		inch		
Dini.	Min	Тур	Мах	Min	Тур	Max
А			1.1			0.043
A1	0.05		0.15	0.002		0.006
A2		0.9			0.035	
b	0.19		0.30	0.0075		0.0118
С	0.09		0.20	0.0035		0.0079
D	7.7		7.9	0.303		0.311
Е	4.3		4.5	0.169		0.177
е		0.65 BSC			0.0256 BSC	
Н	6.25		6.5	0.246		0.256
К	0°		8°	0°		8°
L	0.50		0.70	0.020		0.028

Table 15. TSSOP24 mechanical data

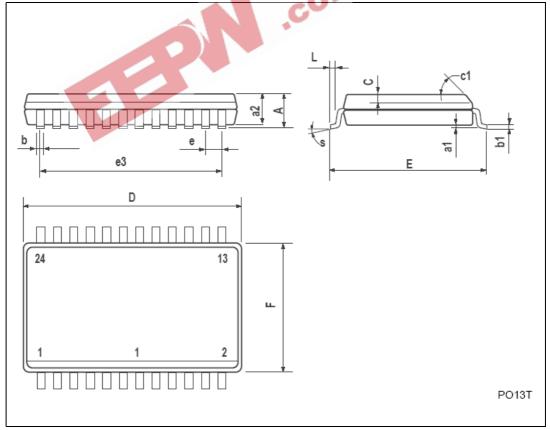
Figure 22. TSSOP24 package dimensions



57

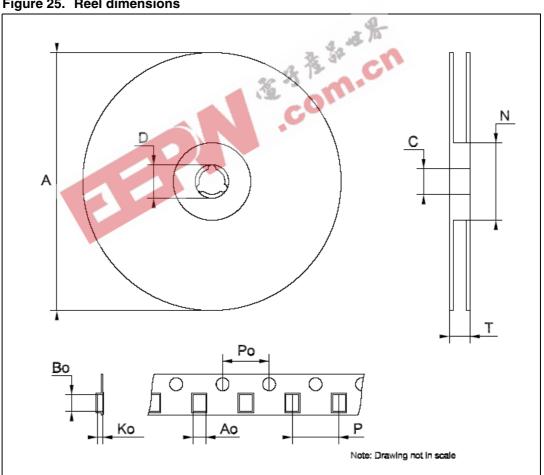
Table 16.	Tape and reel	TSSOP24
-----------	---------------	---------

Dim.		mm.			inch	
	Min	Тур	Мах	Min	Тур	Мах
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.8		7	0.268		0.276
Во	8.2		8.4	0.323		0.331
Ko	1.7		1.9	0.067		0.075
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476


Figure 23. Reel dimensions

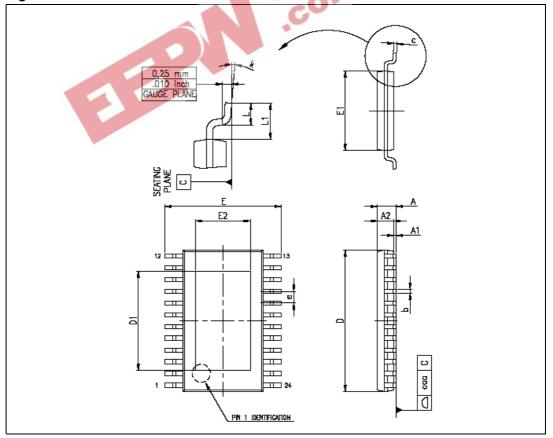
Dim		mm.		inch		
Dim.	Min	Тур	Max	Min	Тур	Мах
А			2.65			0.104
a1	0.1		0.2	0.004		0.008
a2			2.45			0.096
b	0.35		0.49	0.014		0.019
b1	0.23		0.32	0.009		0.012
С		0.5			0.020	
c1			45°	(typ.)		
D	15.20		15.60	0.598		0.614
Е	10.00		10.65	0.393		0.419
е		1.27			0.050	
e3		13.97			0.550	
F	7.40		7.60	0.291		0.300
L	0.50		1.27	0.020		0.050
S			°(m	ax.) 8 💦		

Table 17. SO-24 mechanical data



Dim.	mm.			inch		
	Min	Тур	Max	Min	Тур	Max
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
Ν	60			2.362		
Т			30.4			1.197
Ao	10.8		11.0	0.425		0.433
Во	15.7		15.9	0.618		0.626
Ko	2.9		3.1	0.114		0.122
Po	3.9		4.1	0.153		0.161
Р	11.9		12.1	0.468		0.476

Table 18. Tape and reel SO-24


Figure 25. Reel dimensions

Dim.	mm			inch		
	Min	Тур	Max	Min	Тур	Max
А			1.2			0.047
A1			0.15		0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	7.7	7.8	7.9	0.303	0.307	0.311
D1	4.7	5.0	5.3	0.185	0.197	0.209
Е	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.5	0.169	0.173	0.177
E2	2.9	3.2	3.5	0.114	0.126	0.138
е		0.65		g	0.0256	
К	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018 🦱	0.024	0.030

Table 19. TSSOP24 exposed pad

Figure 26. TSSOP24 dimensions

57

9 Revision history

Table 20.	Document revision history	v
Table 20.		y

Date	Revision	Changes
9-Jan-2007	1	First release
21-May-2007	2	Updated Table 7 on page 6
10-Jul-2007	3	Updated Table 9: Truth table on page 10
28-Feb-2008	4	Updated <i>Table 15: TSSOP24 exposed-pad on page 23</i> Added QSOP-24 package information <i>Table 14</i> and <i>Figure 21</i> <i>on page 22</i>

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

