

TC1027

LINEAR BUILDING BLOCK – QUAD LOW POWER COMPARATOR AND VOLTAGE REFERENCE

FEATURES

- Combines Four Comparators and a Voltage Reference into a Single Package
- Optimized for Single Supply Operation
- Small Package16-Pin SOIC (Narrow) or 16-Pin Plastic DIP (Narrow)
- Ultra Low Input Bias Current Less than 100pA
- Low Quiescent Current15µA max
- Rail-to-Rail Inputs and Outputs
- Operates Down to V_{DD} = 1.8V min.

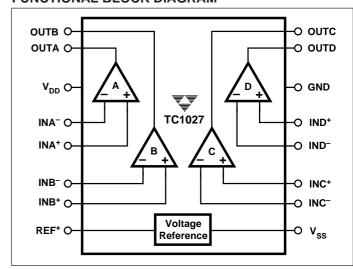
APPLICATIONS

- **■** Power Supply Circuits
- **■** Embedded Systems
- Instrumentation
- Portable Equipment
- **■** Consumer Products
- Replacements for Discrete Components

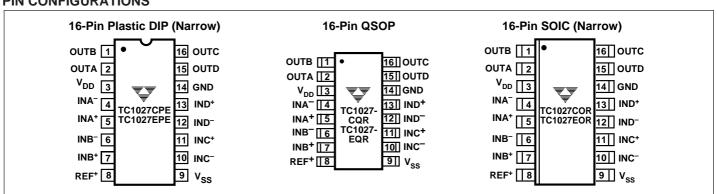
ORDERING INFORMATION

Part No.	Package	Temp. Range
TC1027COR	16-Pin SOIC (Narrow)	0°C to +70°C
TC1027CPE	16-Pin Plastic DIP	0°C to +70°C
TC1027CQR	16-Pin QSOP	0°C to +70°C
TC1027EOR	16-Pin SOIC (Narrow)	- 40°C to +85°C
TC1027EPE	16-Pin Plastic DIP	- 40°C to +85°C
TC1027EQR	16-Pin QSOP	- 40°C to +85°C
TC43EV	Evaluation Kit for Linea	ar
	Building Block Family	

GENERAL DESCRIPTION


The TC1027 is a mixed-function device combining four general purpose, complimentary output comparators and a voltage reference in a single 16-pin package.

This increased integration allows the user to replace two packages, saving space, lowering supply current, and increasing system performance.


The TC1027 is designed specifically for operation from a single supply; however, operation from dual supplies is also possible. The power supply current drain is independent of the magnitude of the power supply voltage. The TC1027 is optimized for low supply voltage and very low supply current operation (15µA max) making it ideal for battery operated applications.

Packaged in a 16-pin QSOP, SOIC (0.150 wide) or 16-pin DIP, the TC1027 is ideal for applications requiring high integration, small size and low power.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

